2,757 research outputs found
Research Progress of Baihe Gujin Decoction in the Treatment of Lung Cancer
Shi-hao Zhao,1 Wen-hui Wang,1 Yu-cong Liang,1 Kai-xin Zhang,1 Kuan Chen,1 Hong-ling Wang,2 Xiang-qi Wang2 1Acupuncture and Moxibustion Massage College, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China; 2Department of Oncology, Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450008, People’s Republic of ChinaCorrespondence: Xiang-qi Wang, Email [email protected]: Baihe Gujin decoction is one of the most commonly used decoction in traditional Chinese medicine for the treatment of lung cancer. It can nourish yin and moisten the lung as well as prevent phlegm from forming and stop coughing. On the one hand, Baihe Gujin decoction is characterized with extensive application, proven efficacy, a long history, and high safety. On the other hand, Baihe Gujin decoction can induce apoptosis of tumor cells, improve immune function and inhibit inflammation. The main anti-tumor components of this include kaempferol, quercetin, isorhamnetin, glycyrrhizin and β-sitosterol. Clinically, Baihe Gujin decoction can improve the adverse reactions caused by radiotherapy, chemotherapy and immunotherapy for lung cancer, enhance the quality of life of patients, and prolong their survival time. At present, there are a large number of clinical and basic researches on the treatment of lung cancer with Baihe Gujin decoction. In this paper, we mainly discussed the treatment of lung cancer with Baihe Gujin decoction through analyzing basic and clinical researches at home and abroad in the past 20 years. Through the discussion, we aimed to probe deeper into Baihe Gujin decoction for the treatment of lung cancer, thereby providing a broader idea for clinical diagnosis and treatment of lung cancer.Keywords: Baihe Gujin decoction, lung cancer, traditional Chinese medicine, basic research, clinical stud
Progress and Prospects of Emerging Potassium–Sulfur Batteries
The potassium–sulfur battery (K–S battery) as an innovative battery technology is a promising candidate for large-scale applications, due to its high energy density and the low cost of both K and S. The development of the K–S technology is, however, inhibited by its low reversible capacity and the safety issues related to the K metal anode. Here, the review starts by discussing the mechanism of the redox reactions for the K–S batteries and emphasizes the challenges for this battery system based on its current research status. Furthermore, the current improvement strategies for the K–S system in terms of the sulfur cathode, electrolyte, separator, and K metal anode are summarized. Finally, future perspectives on the development of the K–S system are proposed
Disparities and risks of sexually transmissible infections among men who have sex with men in China: a meta-analysis and data synthesis.
BACKGROUND: Sexually transmitted infections (STIs), including Hepatitis B and C virus, are emerging public health risks in China, especially among men who have sex with men (MSM). This study aims to assess the magnitude and risks of STIs among Chinese MSM. METHODS: Chinese and English peer-reviewed articles were searched in five electronic databases from January 2000 to February 2013. Pooled prevalence estimates for each STI infection were calculated using meta-analysis. Infection risks of STIs in MSM, HIV-positive MSM and male sex workers (MSW) were obtained. This review followed the PRISMA guidelines and was registered in PROSPERO. RESULTS: Eighty-eight articles (11 in English and 77 in Chinese) investigating 35,203 MSM in 28 provinces were included in this review. The prevalence levels of STIs among MSM were 6.3% (95% CI: 3.5-11.0%) for chlamydia, 1.5% (0.7-2.9%) for genital wart, 1.9% (1.3-2.7%) for gonorrhoea, 8.9% (7.8-10.2%) for hepatitis B (HBV), 1.2% (1.0-1.6%) for hepatitis C (HCV), 66.3% (57.4-74.1%) for human papillomavirus (HPV), 10.6% (6.2-17.6%) for herpes simplex virus (HSV-2) and 4.3% (3.2-5.8%) for Ureaplasma urealyticum. HIV-positive MSM have consistently higher odds of all these infections than the broader MSM population. As a subgroup of MSM, MSW were 2.5 (1.4-4.7), 5.7 (2.7-12.3), and 2.2 (1.4-3.7) times more likely to be infected with chlamydia, gonorrhoea and HCV than the broader MSM population, respectively. CONCLUSION: Prevalence levels of STIs among MSW were significantly higher than the broader MSM population. Co-infection of HIV and STIs were prevalent among Chinese MSM. Integration of HIV and STIs healthcare and surveillance systems is essential in providing effective HIV/STIs preventive measures and treatments. TRIAL REGISTRATION: PROSPERO NO: CRD42013003721
Comprehensive Study in the Inhibitory Effect of Berberine on Gene Transcription, Including TATA Box
Berberine (BBR) is an established natural DNA intercalator with numerous pharmacological functions. However, currently there are neither detailed reports concerning the distribution of this alkaloid in living cells nor reports concerning the relationship between BBR's association with DNA and the function of DNA. Here we report that the distribution of BBR within the nucleus can be observed 30 minutes after drug administration, and that the content of berberine in the nucleus peaks at around 4 µmol, which is twelve hours after drug administration. The spatial conformation of DNA and chromatin was altered immediately after their association with BBR. Moreover, this association can effectively suppress the transcription of DNA in living cell systems and cell-free systems. Electrophoretic mobility shift assays (EMSA) demonstrated further that BBR can inhibit the association between the TATA binding protein (TBP) and the TATA box in the promoter, and this finding was also attained in living cells by chromatin immunoprecipitation (ChIP). Based on results from this study, we hypothesize that berberine can suppress the transcription of DNA in living cell systems, especially suppressing the association between TBP and the TATA box by binding with DNA and, thus, inhibiting TATA box-dependent gene expression in a non-specific way. This novel study has significantly expanded the sphere of knowledge concerning berberine's pharmacological effects, beginning at its paramount initial interaction with the TATA box
Expression of Foxp3 in colorectal cancer but not in Treg cells correlates with disease progression in patients with colorectal cancer
Background: Regulatory T cells (Treg) expressing the transcription factor forkhead-box protein P3 (Foxp3) have been identified to counteract anti-tumor immune responses during tumor progression. Besides, Foxp3 presentation by cancer cells itself may also allow them to evade from effector T-cell responses, resulting in a survival benefit of the tumor. For colorectal cancer (CRC) the clinical relevance of Foxp3 has not been evaluated in detail. Therefore the aim of this study was to study its impact in colorectal cancer (CRC).
Methods and Findings: Gene and protein analysis of tumor tissues from patients with CRC was performed to quantify the expression of Foxp3 in tumor infiltrating Treg and colon cancer cells. The results were correlated with clinicopathological parameters and patients overall survival. Serial morphological analysis demonstrated Foxp3 to be expressed in cancer cells. High Foxp3 expression of the cancer cells was associated with poor prognosis compared to patients with low Foxp3 expression. In contrast, low and high Foxp3 level in tumor infiltrating Treg cells demonstrated no significant differences in overall patient survival.
Conclusions: Our findings strongly suggest that Foxp3 expression mediated by cancer cells rather than by Treg cells contribute to disease progression
Great Genetic Differentiation among Populations of Meconopsis integrifolia and Its Implication for Plant Speciation in the Qinghai-Tibetan Plateau
The complex tectonic events and climatic oscillations in the Qinghai-Tibetan Plateau (QTP), the largest and highest plateau in the world, are thought to have had great effects on the evolutionary history of the native plants. Of great interest is to investigate plant population genetic divergence in the QTP and its correlation with the geologic and climatic changes. We conducted a range-wide phylogeographical analysis of M. integrifolia based on the chloroplast DNA (cpDNA) trnL-trnF and trnfM-trnS regions, and defined 26 haplotypes that were phylogenetically divided into six clades dated to the late Tertiary. The six clades correspond, respectively, to highly differentiated population groups that do not overlap in geographic distribution, implying that the mountain ranges acting as corridors or barriers greatly affected the evolutionary history of the QTP plants. The older clade of M. integrifolia only occurs in the southwest of the species' range, whereas the distributions of younger clades extend northeastward in the eastern QTP, suggesting that climatic divergence resulting from the uplift of the QTP triggered the initial divergence of M. integrifolia native to the plateau. Also, the nrDNA ITS region was used to clarify the unexpected phylogenetic relationships of cpDNA haplotypes between M. integrifolia and M. betonicifolia. The topological incongruence between the two phylogenies suggests an ancestral hybridization between the two species. Our study indicates that geographic isolation and hybridization are two important mechanisms responsible for the population differentiation and speciation of Meconopsis, a species-rich genus with complex polyploids
Direct and indirect effects of soil fauna, fungi and plants on greenhouse gas fluxes
Soils harbour diverse soil fauna and a wide range of soil microorganisms. These fauna and microorganisms directly contribute to soil greenhouse gas (GHG) fluxes via their respiratory and metabolic activities and indirectly by changing the physical, chemical and biological properties of soils through bioturbation, fragmentation and redistribution of plant residues, defecation, soil aggregate formation, herbivory, and grazing on microorganisms and fungi. Based on recent results, the methods and results found in relation to fauna as well as from fungi and plants are presented. The approaches are outlined, and the significance of these hitherto ignored fluxes is discussed
Effects of Thioglycolic Acid on Parthenogenetic Activation of Xenopus Oocytes
BACKGROUND: Existing in Permanent-wave solutions (PWS), thioglycolic acid (TGA) is widely used in hairdressing industry for its contribution to hair styling. However, the toxicity of TGA, especially its reproductive toxicity, gradually calls the attention of more and more researchers. METHOD: In this work, xenopus oocytes were pretreated with different concentration of TGA, and then activated by calcium ionophore A23187. During culture, the oocytes activation rates were taken note at different time after adding calcium ionophore A23187. At the end of the culture period, the nuclear status was detected under confocal microscope. In addition, some other samples were collected for Western-Blotting analysis. RESULT: TGA significantly inhibited the oocytes activation rate and pronuclear formation. It may be resulted from the inhibition of the degradation of p-ERK1, Mos and CyclinB2. CONCLUSION: TGA inhibits in vitro parthenogenetic activation of xenopus oocytes with inhibited the degradation of proteins involved in mitogenic-activated protein kinase (MAPK) and maturation-promoting factor (MPF) pathways
- …