23,471 research outputs found

    Urban Positioning on a Smartphone: Real-time Shadow Matching Using GNSS and 3D City Models

    Get PDF
    The performance of global navigation satellite system (GNSS) user equipment in urban canyons is particularly poor in the cross-street direction. This is because more signals are blocked by buildings in the cross-street direction than along the street [1]. To address this problem, shadow matching has been proposed to improve cross-street positioning from street-level to lane-level (meters-level) accuracy using 3D city models. This is a new positioning method that uses the city model to predict which satellites are visible from different locations and then compares this with the measured satellite visibility to determine position [2]. In previous work, we have demonstrated shadow matching using GPS and GLONASS data recorded using a geodetic GNSS receiver in Central London, achieving a cross-street position accuracy within 5m 89% of the time [3]. This paper describes the first real-time implementation of shadow matching on a smartphone capable of receiving both GPS and GLONASS. The typical processing time for the system to provide a solution was between 1 and 2 seconds. On average, the cross-street position accuracy from shadow matching was a factor of four better than the phone’s conventional GNSS position solution. A number of groups have also used 3D city models to predict and, in some cases, correct non-line-of-sight reception [4-6]. However, to our knowledge, this paper reports the first ever demonstration of any 3D-model-aided GNSS positioning technique in real time, as opposed to using recorded GNSS data. When it comes to real-time positioning on a smartphone, various obstacles exist including lower-grade GNSS receivers, limited availability of computational power, memory, and battery power. To tackle these problems, in this work, an efficient smartphone-based shadow-matching positioning system was designed. The system was then implemented in an app (i.e. application or software) on the Android operating system, the most common operating system for smartphones. The app has been developed in Java using Eclipse, a software development environment (SDE). It was built on Standard Android platform 4.0.3, using the Android Application programming interface (API) to retrieve information from the GNSS chip. The new positioning system does not require any additional hardware or real-time rendering of 3D scenes. Instead, a grid of building boundaries is computed in advance and stored within the phone. This grid could also be downloaded from the network on demand. Shadow matching is therefore both power-efficient and cost-effective. Experimental testing was performed in Central London using a Samsung Galaxy S3 smartphone. This receives both GPS and GLONASS satellites and has an assisted GNSS (AGNSS) capability. A 3D city model of the Aldgate area of central London, supplied by ZMapping Ltd, was used. Four experimental locations with different building topologies were selected on Fenchurch Street, a dense urban area. Using the Android app developed in this work, real-time shadow-matching positioning was performed over 6 minutes at each site with a new position solution computed every 5 seconds using both GPS and GLONASS observations were used for real-time positioning. The measurement data was also recorded at 1-second intervals for later analysis. Various criteria are applied to access the new system and compare it with the conventional GNSS positioning results. The experimental results show that the proposed system outperforms the conventional GNSS positioning solution, reducing the mean absolute deviation of the cross-street positioning error from 14.81 m to 3.33 m, with a 77.5 percentage reduction. The feasibility of deploying the new system on a larger scale is also discussed from three perspectives: the availability of 3D city models and satellite information, data storage and transfer requirements, and demand from applications. This meters-level across-street accuracy in urban areas benefits a variety of applications from Intelligent Transportation Systems (ITS) and land navigation systems for automated lane identification to step-by-step guidance for the visually impaired and for tourists, location-based advertisement (LBA) for targeting suitable consumers and many other location-based services (LBS). The system is also expandable to work with Galileo and Beidou (Compass) in the future, with potentially improved performance. In the future, the shadow-matching system can be implemented on a smartphone, a PND, or other consumer-grade navigation device, as part of an intelligent positioning system [7], along with height-aided conventional GNSS positioning, and potentially other technologies, such as Wi-Fi and inertial sensors to give the best overall positioning performance. / References [1] Wang, L., Groves, P. D. & Ziebart, M. Multi-constellation GNSS Performance Evaluation for Urban Canyons Using Large Virtual Reality City Models. Journal of Navigation, July 2012. [2] Groves, P. D. 2011. Shadow Matching: A New GNSS Positioning Technique for Urban Canyons The Journal of Navigation, 64, pp417-430. [3] Wang, L., Groves, P. D. & Ziebart, M. K. GNSS Shadow Matching: Improving Urban Positioning Accuracy Using a 3D City Model with Optimized Visibility Prediction Scoring. ION GNSS 2012. [4] Obst, M., Bauer, S. and Wanielik, G. Urban Multipath Detection and mitigation with Dynamic 3D Maps for Reliable Land Vehicle Localization. IEEE/ION PLANS 2012. [5] Peyraud, S., Bétaille, D., Renault, S., Ortiz, M., Mougel, F., Meizel, D. and Peyret, F. (2013) About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm. Sensors, Vol. 13, 2013, 829?847. [6] Bourdeau, A., M. Sahmoudi, and J.-Y. Tourneret, “Tight Integration of GNSS and a 3D City Model for Robust Positioning in Urban Canyons,” Proc. ION GNSS 2012. [7] Groves, P. D., Jiang, Z., Wang, L. & Ziebart, M. Intelligent Urban Positioning using Multi-Constellation GNSS with 3D Mapping and NLOS Signal Detection. ION GNSS 2012

    GNSS Shadow Matching: Improving Urban Positioning Accuracy Using a 3D City Model with Optimized Visibility Prediction Scoring

    Get PDF
    The poor performance of global navigation satellite systems (GNSS) user equipment in urban canyons is a well-known problem, especially in the cross-street direction. A new approach, shadow matching, has recently be proposed to improve the cross-street accuracy using GNSS, assisted by knowledge derived from 3D models of the buildings close to the user of navigation devices. In this work, four contributions have been made. Firstly, a new scoring scheme, a key element of the algorithm to weight candidate user locations, is proposed. The new scheme takes account of the effects of satellite signal diffraction and reflection by weighting the scores based on diffraction modelling and signal-to-noise ratio (SNR). Furthermore, an algorithm similar to k-nearest neighbours (k-NN) is developed to interpolate the position solution over an extensive grid. The process of generating this grid of building boundaries is also optimized. Finally, instead of just testing at two locations as in the earlier work, realworld GNSS data has been collected at 22 different locations in this work, providing a more comprehensive and statistical performance analysis of the new shadowmatching algorithm. In the experimental verification, the new scoring scheme improves the cross street accuracy with an average bias of 1.61 m, with a 9.4% reduction compared to the original SS22 scoring scheme. Similarly, the cross street RMS is 2.86 m, a reduction of 15.3%. Using the new scoring scheme, the success rate for determining the correct side of a street is 89.3%, 3.6% better than using the previous scoring scheme; the success rate of distinguishing the footpath from a traffic lane is 63.6% of the time, 6.8% better than using the previous scoring scheme

    Dynamic conductance of mesoscopic waveguides

    Get PDF
    We report a theoretical investigation of dynamic conductance G(), for general ac frequency , of two-dimensional mesoscopic waveguides whose transport is characterized by antiresonances. We calculate G() by numerically evaluating nonequilibrium Green's functions. By tuning the ac frequency we observe photon-assisted resonant transport as well as a gradual smearing out of the antiresonances. The antiresonance causes the dynamic response to vary between capacitive-like behavior to that of the inductive-like behavior. © 2001 American Institute of Physics.published_or_final_versio

    The interactive bending wrinkling behaviour of inflated beams

    Get PDF
    ArticleA model is proposed based on a Fourier series method to analyse the interactive bending wrinkling behaviour of inflated beams. The whole wrinkling evolution is tracked and divided into three stages by identifying the bifurcations of the equilibrium path. The critical wrinkling and failure moments of inflated beam are then able to be predicted. The global-local interactive buckling pattern is elucidated by the proposed theoretical model and also verified by non-contact experimental tests. The effects of geometric parameters, internal pressure and boundary conditions on the buckling of inflated beams are investigated in the end. Results reveal that the interactive buckling characteristics of inflated beam under bending are more sensitive to the dimensions of the structure and boundary conditions. We find that beams which are simply supported at both ends or clamped and simply supported boundary conditions may prevent the wrinkling formation. The results provide significant support for our understanding of the bending-wrinkling behaviour of inflated beams.This work is supported by National Natural Science Foundation of China, 11172079 and 11572099; Program for New Century Excellent Talents in University, NCET-11-0807; Natural Science Foundation of Heilongjiang Province of China, A2015002; the Fundamental Research Funds for the Central Universities, HIT.BRETIII.201209 and HIT.MKSTISP.2016 29

    Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation

    Get PDF
    Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1  Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the possible consequences of chaotic dynamics for memory processing and learning

    Adipose tissue-derived stem cells in oral mucosa tissue engineering: Enhanced migration and proliferation in co-culture with oral keratinocytes in vitro

    Get PDF
    Tissue-engineered oral mucosa holds a great prospect in urethroplasty and adipose tissue-derived stem cells (ADSCs) may play an important role in this field. In this research, canine oral keratinocytes (OKs) and ADSCs were harvested and cultured in vitro. The affinity between the two cell lines was evaluated by analyzing their migration and proliferation patterns in a co-culture environment. The results demonstrate that both canine ADSCs and OKs showed improved migration in the presence of the other cell line as a co-culture when compared to monoculture. Further, conditioned medium using the supernatant of one cell line accelerated the other cell line’s proliferation rate. Hence, it was concluded that the affinity between OKs and ADSCs was fitting; the presence of ADSCs accelerated the migration and proliferation of OKs in vitro. These results indicate that it is practical to use ADSCs and OKs to construct a tissue-engineered oral mucosa, since the presence of the former could activate the latter in vitro, maybe even in vivo. This may help to build tissue-engineered oral mucosa, which may be a new method for urethroplasty.Key words: Urethroplasty, adipose tissue-derived stem cells, oral keratinocytes, tissue engineering

    A Kind of Affine Weighted Moment Invariants

    Full text link
    A new kind of geometric invariants is proposed in this paper, which is called affine weighted moment invariant (AWMI). By combination of local affine differential invariants and a framework of global integral, they can more effectively extract features of images and help to increase the number of low-order invariants and to decrease the calculating cost. The experimental results show that AWMIs have good stability and distinguishability and achieve better results in image retrieval than traditional moment invariants. An extension to 3D is straightforward

    The nuclear export factor CRM1 controls juxta-nuclear microtubule-dependent virus transport

    Get PDF
    Transport of large cargo through the cytoplasm requires motor proteins and polarized filaments. Viruses that replicate in the nucleus of post-mitotic cells use microtubules and the dynein–dynactin motor to traffic to the nuclear membrane and deliver their genome through nuclear pore complexes (NPCs) into the nucleus. How virus particles (virions) or cellular cargo are transferred from microtubules to the NPC is unknown. Here, we analyzed trafficking of incoming cytoplasmic adenoviruses by single-particle tracking and superresolution microscopy. We provide evidence for a regulatory role of CRM1 (chromosome-region-maintenance-1; also known as XPO1, exportin-1) in juxta-nuclear microtubule-dependent adenovirus transport. Leptomycin B (LMB) abolishes nuclear targeting of adenovirus. It binds to CRM1, precludes CRM1–cargo binding and blocks signal-dependent nuclear export. LMB-inhibited CRM1 did not compete with adenovirus for binding to the nucleoporin Nup214 at the NPC. Instead, CRM1 inhibition selectively enhanced virion association with microtubules, and boosted virion motions on microtubules less than ∼2 µm from the nuclear membrane. The data show that the nucleus provides positional information for incoming virions to detach from microtubules, engage a slower microtubule-independent motility to the NPC and enhance infectio
    corecore