3,919 research outputs found
An Opening Profile Recognition Method for Magnetic Flux Leakage Signals of Defect
The defect opening profile recognition is of great concern in the magnetic flux leakage (MFL) measurement technique. The detected spatial MFL signal has three components: horizontal, vertical, and normal components. Horizontal and normal component signals are commonly used to estimate the defect profile, while the vertical component has always been neglected. With the development of the high resolution and the 3-D MFL testing techniques, the vertical component signal is becoming more available. This paper analyzes the essential right-angle features of the vertical component signal, which is useful for the defect opening profile recognition. After obtaining the initial profile from the horizontal or normal component, the types of the right angle is identified from the vertical component, and the opening profile is further optimized based on these right-angle features. The opening profile recognition method is put forward in this paper to improve the accuracy of the recognition result of the defect. Both simulation and experimental tests are conducted to verify the good performance of the proposed method. Compared with the opening profiles recognized merely by the horizontal component signal, the proposed method shows better recognition results, which also validates that the vertical component signal can also be a useful information for the defect estimation
Postharvest handling systems assessment for vegetables in China and Australia
The needs of industry are increasingly being targeted when planning research programs. This is frequently done informally by individual researchers or research groups, but often lacks a comprehensive study of the systems and people in the system. This may result in misdirected, inappropriate, or inadequate research programs that do not meet the needs of the industry groups concerned.
A component of the ACIAR project PHT/1994/016 “Shelf-life extension of leafy vegetables” was the assessment of postharvest handling systems for a range of vegetables in China and Australia.
The assessment methodology selected was an adaptation of ‘A commodity systems assessment methodology for program and project identification’ developed by J. La Gra of the University of Idaho, USA. We used the methodology in a series of case studies reflecting the main postharvest handling systems. Crops assessed were Chinese cabbage, oriental bunching onion, pak choi (in China), and broccoli (in China and Australia). We assessed:
• fresh and stored, and domestic and export, Chinese cabbage;
• stored oriental bunching onion;
• fresh pak choi; and
• fresh domestic and exported broccoli.
We also included in the assessment peri-urban production and product transported long distances to market.
This paper discusses the methodology used and its advantages and limitations
Effective Focal Area Dimension Optimization of Shear Horizontal Point-Focusing EMAT Using Orthogonal Test Method
To overcome the shortcomings of low energy conversion efficiency of electromagnetic acoustic transducers (EMATs), point-focusing shear horizontal (PFSH) wave EMAT is used to focus the wave energy into a specific area. Many factors will affect the capability of the focusing transducer, and in addition to considering the signal intensity, the detection accuracy is also required to be investigated. Specifically, to simplify the test process, we use the orthogonal test method to study the effect of different influence parameters on signal intensity and focal area dimensions. Seven factors are selected, and three results are determined in the test. Range analysis shows that for signal amplitude M , the top three impact factors are the coil width w , coil turns n , and focal length lF (equal to bandwidth factor α ). Moreover, magnet number m and frequency fc dominate the effective focal length lfd , and aperture angle θ determines the effective focal width wfd . To enable higher signal intensity and smaller focal area dimensions, it is necessary to consider various factors on the PFSH-EMAT focusing performance. The test’s signal intensity with optimized parameters’ combination at the focal point is nearly 144.42% higher than the average of all the tests, lfd decreased by 37.84%, and wfd decreased by 50.59%. The experiment also verified that focusing EMAT with optimized parameters has a better focusing performance
Defect detection and identification of point-focusing shear-horizontal EMAT for plate inspection
As a kind of nondestructive testing (NDT) method, shear-horizontal (SH)-guided wave detection technology is widely used on an electromagnetic acoustic transducer (EMAT). Although ultrasonic-guided waves perform well in defect location, it is difficult to obtain detailed information about defects, and the low efficiency of EMAT energy conversion still reduces the EMAT’s performance. Therefore, in this work, the defect detection method of different shapes and sizes by point-focusing shear-horizontal (PFSH)-guided wave EMAT with the use of periodic permanent magnet (PPM) is investigated through simulation and experiment. For the purpose of defect classification and quantification, the extraction principles of defect features are obtained through simulation based on the circumferential scatter diagrams, and the neural network (NN) is used to process the features extracted from the experimental data. The results show that by extracting effective defect features from the scatter diagram, high-accuracy classification and high-precision quantification of defects under the influence of the focusing transducer can be achieved
The existence of solutions for the system of vector quasi-equilibrium problems in topological order spaces
AbstractThis paper introduces two kinds of quasiconcave mappings which are different from the usual quasiconcave function. We establish a result for the existence of solutions for the system of vector quasi-equilibrium problems in the frame of topological order, by providing a maximal elements version of the well known Browder fixed points theorem
Quantification of white matter cellularity and damage in preclinical and early symptomatic Alzheimer\u27s disease
Interest in understanding the roles of white matter (WM) inflammation and damage in the pathophysiology of Alzheimer disease (AD) has been growing significantly in recent years. However, in vivo magnetic resonance imaging (MRI) techniques for imaging inflammation are still lacking. An advanced diffusion-based MRI method, neuro-inflammation imaging (NII), has been developed to clinically image and quantify WM inflammation and damage in AD. Here, we employed NII measures in conjunction with cerebrospinal fluid (CSF) biomarker classification (for β-amyloid (Aβ) and neurodegeneration) to evaluate 200 participants in an ongoing study of memory and aging. Elevated NII-derived cellular diffusivity was observed in both preclinical and early symptomatic phases of AD, while disruption of WM integrity, as detected by decreased fractional anisotropy (FA) and increased radial diffusivity (RD), was only observed in the symptomatic phase of AD. This may suggest that WM inflammation occurs earlier than WM damage following abnormal Aβ accumulation in AD. The negative correlation between NII-derived cellular diffusivity and CSF Aβ42 level (a marker of amyloidosis) may indicate that WM inflammation is associated with increasing Aβ burden. NII-derived FA also negatively correlated with CSF t-tau level (a marker of neurodegeneration), suggesting that disruption of WM integrity is associated with increasing neurodegeneration. Our findings demonstrated the capability of NII to simultaneously image and quantify WM cellularity changes and damage in preclinical and early symptomatic AD. NII may serve as a clinically feasible imaging tool to study the individual and composite roles of WM inflammation and damage in AD. Keywords: Inflammation, White matter damage, Diffusion basis spectrum imaging, Neuro-inflammation imaging, Cerebrospinal fluid, Preclinical Alzheimer disease, Early symptomatic Alzheimer disease, Magnetic resonance imagin
Prognostic significance of nm23-H1 expression in oral squamous cell carcinoma
Recent studies indicated nm23-H1 played a role in cancer progression. Therefore, we investigated clinical significance of nm23-H1 expression in oral squamous cell carcinoma (OSCC). In total, 86 OSCC specimens were immunohistochemically stained with nm23-H1-specific monoclonal antibodies. Immunohistochemical staining of nm23-H1 was confirmed by immunoblotting. The relations between nm23-H1 expression and clinicopathologic variables were evaluated by chi(2) analysis. As increased size of primary tumour could escalate metastatic potential and the data of patients at the late T stage might confound statistical analyses, we thus paid special attention to 54 patients at the early T stage of OSCC. Statistical difference of survival was compared by a log-rank test. Immunohistochemically, nm23-H1 expression was detected in 48.8% (42 out of 86) of tumorous specimens. It positively correlated with larger primary tumour size (P = 0.03) and inversely with cigarette-smoking habit (P = 0.042). In patients at the early T stage, decreased nm23 expression was associated with increased incidence of lymph node metastasis (P = 0.004) and indicated poor survival (P = 0.014). Tumour nm23-H1 expression is a prognostic factor for predicting better survival in OSCC patients at the early T stage, which may reflect antimetastatic potential of nm23. Therefore, modulation of nm23-H1 expression in cancer cells can provide a novel possibility of improving therapeutic strategy at this stage. In addition, our results further indicated cigarette smoking could aggravate the extent of nm23-H1 expression and possibly disease progression of OSCC patients. (C) 2004 Cancer Research UK
- …