27,190 research outputs found

    Robust filtering for a class of stochastic uncertain nonlinear time-delay systems via exponential state estimation

    Get PDF
    Copyright [2001] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.We investigate the robust filter design problem for a class of nonlinear time-delay stochastic systems. The system under study involves stochastics, unknown state time-delay, parameter uncertainties, and unknown nonlinear disturbances, which are all often encountered in practice and the sources of instability. The aim of this problem is to design a linear, delayless, uncertainty-independent state estimator such that for all admissible uncertainties as well as nonlinear disturbances, the dynamics of the estimation error is stochastically exponentially stable in the mean square, independent of the time delay. Sufficient conditions are proposed to guarantee the existence of desired robust exponential filters, which are derived in terms of the solutions to algebraic Riccati inequalities. The developed theory is illustrated by numerical simulatio

    On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters

    Get PDF
    Copyright [2002] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we investigate the stochastic stabilization problem for a class of bilinear continuous time-delay uncertain systems with Markovian jumping parameters. Specifically, the stochastic bilinear jump system under study involves unknown state time-delay, parameter uncertainties, and unknown nonlinear deterministic disturbances. The jumping parameters considered here form a continuous-time discrete-state homogeneous Markov process. The whole system may be regarded as a stochastic bilinear hybrid system that includes both time-evolving and event-driven mechanisms. Our attention is focused on the design of a robust state-feedback controller such that, for all admissible uncertainties as well as nonlinear disturbances, the closed-loop system is stochastically exponentially stable in the mean square, independent of the time delay. Sufficient conditions are established to guarantee the existence of desired robust controllers, which are given in terms of the solutions to a set of either linear matrix inequalities (LMIs), or coupled quadratic matrix inequalities. The developed theory is illustrated by numerical simulatio

    Nonlinear filtering for state delayed systems with Markovian switching

    Get PDF
    This paper deals with the filtering problem for a general class of nonlinear time-delay systems with Markovian jumping parameters. The nonlinear time-delay stochastic systems may switch from one to the others according to the behavior of a Markov chain. The purpose of the problem addressed is to design a nonlinear full-order filter such that the dynamics of the estimation error is guaranteed to be stochastically exponentially stable in the mean square. Both filter analysis and synthesis problems are investigated. Sufficient conditions are established for the existence of the desired exponential filters, which are expressed in terms of the solutions to a set of Linear Matrix Inequalities (LMIs). The explicit expression of the desired filters is also provided.published_or_final_versio

    Magnetic field mediated low-temperature resistivity upturn in electron-doped La1-xHfxMnO3 manganite oxides

    Get PDF
    published_or_final_versio

    Defect formation and annealing behaviors of fluorine-implanted GaN layers revealed by positron annihilation spectroscopy

    Get PDF
    Defect formation and annealing behaviors of fluorine-implanted, unintentionally doped GaN layers were studied by positron annihilation spectroscopy (PAS). Single Ga vacancies (VGa) were identified as the main vacancy-type defects detected by PAS after fluorine implantation at 180 keV with a dose of 1× 10 15 cm -2. Implantation-induced VGa tend to aggregate and form vacancy clusters after postimplantation annealing in N 2 ambient at 600 °C. Fluorine ions tend to form F-vacancy complexes quickly after thermal annealing, which is consistent with the proposed diffusion model that predicts the behaviors of fluorine in GaN. © 2009 American Institute of Physics.published_or_final_versio

    Phase diagram and spin-glass phenomena in electron-doped La1-xHfxMnO3 (0.05 ≤ x ≤ 0.3) manganite oxides

    Get PDF
    The effects of tetravalent hafnium doping on the structural, transport, and magnetic properties of polycrystalline La1−xHfxMnO3 (LHMO) (0.05 ≤ x ≤ 0.3) were investigated systematically. LHMO exhibited a typical colossal magnetoresistance effect via the double-exchange between Mn2+ and Mn3+ ions, instead of that between Mn3+ and Mn4+ ions in hole-doped manganites. A phase diagram was obtained for the first time through magnetization and resistance measurements in a broad temperature range. As the Hf concentration varied from x = 0.05 to 0.3, the Curie point and metal-to-insulator transition temperature increased significantly, whereas the magnetization and resistivity decreased remarkably. An abnormal enhancement of the magnetization was observed at about 42 K. It was further confirmed that a second magnetic phase MnO2 in LHMO gives rise to such a phenomenon. The possible causes are discussed in detail. The dynamic magnetic properties of LHMO, including relaxation and aging processes, were studied, demonstrating a spin-glass state at low temperature accompanied by a ferromagnetic phase.published_or_final_versio

    The increase of the functional entropy of the human brain with age

    Get PDF
    We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy
    corecore