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plant-model matching conditions with unparallelbi in B, the asymp-
totic state tracking is achieved by the adaptive control scheme. At the
time instant when one actuator fails, there is a transient response in the
state tracking errors because of the system actuation structure change.
As time goes on, with the help of controller adaptation, the tracking
errors become smaller and go to zero. At the time instant when one
actuator fails, the controller parameters (e.g.,k3 in Fig. 2) also have a
transient behavior, and then go to some constant values. These values
are not necessarily to be the true matching parameters. All signals in
the adaptive control system are bounded, and stability and convergence
are ensured.

VI. CONCLUDING REMARKS

In this note, we derived a set of new necessary and sufficient condi-
tions for actuator failure compensation for linear time-invariant system
with actuator failures characterized by unknown input signals stuck at
some unknown fixed values at unknown time instants, for state tracking
with state feedback. It is shown that the number of active actuators and
the actuation structure are crucial for compensation designs. With more
than one actuator active, the necessary and sufficient conditions for ac-
tuator failure compensation design are much less restrictive than those
conditions with only one actuator active. Such conditions are required
for both the nominal design with system knowledge and the adaptive
design without system knowledge. An adaptive actuator failure com-
pensation control scheme based on relaxed system actuation conditions
is developed for systems with unknown dynamics parameters and actu-
ator failure parameters including failure values, times and patterns. For
the developed adaptive control scheme, the stability of the closed-loop
system and asymptotic state tracking properties are ensured. Simula-
tion results for the linearized Boeing 747 model (lateral motion) veri-
fied the desired system performance with failure compensation.
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Stability Analysis and Observer Design for Neutral Delay
Systems

Zidong Wang, James Lam, and K. J. Burnham

Abstract—This note is concerned with the observer design problem for a
class of linear delay systems of the neutral-type. The problem addressed is
that of designing a full-order observer that guarantees the exponential sta-
bility of the error dynamic system. An effective algebraic matrix equation
approach is developed to solve this problem. In particular, both observer
analysis and design problems are investigated. By using the singular value
decomposition technique and the generalized inverse theory, sufficient con-
ditions for a neutral-type delay system to be exponentially stable are first
established. Then, an explicit expression of the desired observers is derived
in terms of some free parameters. Furthermore, an illustrative example is
used to demonstrate the validity of the proposed design procedure.

Index Terms—Algebraic matrix equation, exponential stability, neutral
systems, observer design, time-delay systems.

I. INTRODUCTION

In the past few decades, the stability analysis and feedback stabiliza-
tion problems for neutral-type delay systems have attracted the atten-
tion of many authors, see, e.g., [2], [3], [6], [7], [9], [12], [14], [19],
[20], and the references therein. The systems that can be described by
neutral-type systems include, but are not limited to, lumped parameter
networks interconnected by transmission lines, systems of a turbojet
engine, infeed grinding, and continuous induction heating of a thin
moving body [9]. A special class of neutral systems is retarded systems
that include applications in chemical reactors, rolling mill, ship stabi-
lization, manual control, microwave oscillator, population immune re-
sponse, and distribution of albumin in the blood stream.

In [9], it has been shown that the reactor in a chemical engineering
system can sometimes be described by a linear neutral delay equation

_x(t)� J _x(t� d) = Ax(t) + Adx(t� d):

Note that the presence of a retarded argument in the state derivatives
makes the investigation of such equations more complicated than equa-
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tions with delays only in the states. The major difficulty results from the
fact that neutral systems almost always have infinite spectrum, called
a neutral root chain, in a vertical strip of the complex plane (see, e.g.,
[3], [14], and [20]). Thus, in most existing literature, the authors as-
sumed that either there is no unstable neutral root chain or they can
first use derivative feedback to assign the unstable neutral root chain
to the left-hand side of the complex plane. In the stochastic setting, the
neutral stochastic delay systems have been introduced in [8], and the
asymptotic stability and exponential stability of such kind of systems
have been studied in [8] and [11], respectively.

On the other hand, the problem of observer design has been well
studied for more than three decades in various branches of science and
engineering. The celebrated Luenberger observer theory provides a so-
lution to this problem, but it no longer holds for linear neutral systems.
We call an observer an exponential one if the dynamics of the estima-
tion error is exponentially stable. It is noted that the design of exponen-
tially fast observers for linear and nonlinear stochastic systems is also
an attractive research topic, see, e.g., [15]–[17], and references therein.
So far, the exponential observer design problem forneutral-typedelay
systems has not yet been fully investigated in the literature, and remains
to be important and challenging.

In this note, we address the observer design problem for a class of
linear neutral systems. Here, attention is focused on the design of a
linear observer such that the dynamics of the estimation error is expo-
nentially stable, independent of the time delay. Sufficient conditions are
proposed to guarantee the existence of a desired exponential observer,
which is derived in terms of the solutions to several algebraic matrix
equations. Unlike most existing work, by using the present approach,
we do not have to perform a spectral analysis, that is, to consider the
effect due to the unstable neutral root chain. We demonstrate the useful-
ness and applicability of the developed theory by means of a numerical
example.

Notation: The notations used in this note are fairly standard.n,
n�m and + denote then-dimensional Euclidean space, the set of

all n�m real matrices and the set of all positive scalars, respectively.
is the set of all natural numbers. The superscript “T ” denotes the

transpose and the notationX � Y (respectively,X > Y ) where
X andY are real symmetric matrices, means thatX � Y is posi-
tive–semidefinite (respectively, positive definite).I is the identity ma-
trix with compatible dimension. We leth > 0 andC([�h; 0]; n)
denote the family of continuous functions' from [�h; 0] to n with
the normk'k = sup�h���0 j'(�)j, wherej � j is the Euclidean norm
in n. If A is a matrix, denote bykAk its operator norm, i.e.,kAk =
supfjAxj: jxj = 1g = �max(ATA) where�max(�) [respectively,
�min(�)] means the largest (respectively, smallest) eigenvalue ofA.A+

stands for the Moore–Penrose inverse ofA. Sometimes, the arguments
of a function will be omitted in the analysis when no confusion can
arise.

II. PROBLEM FORMULATION AND ASSUMPTIONS

Consider the following linear continuous-time state-delayed system
of the neutral-type:

_x(t)� J _x(t� h) =Ax(t) +Adx(t� h) (1)

y(t) =Cx(t) (2)

wherex(t) 2 n is the state,y(t) 2 p is the measurement output.h
denotes the constant time-delay which appears in both the state and the
derivative term of the system equation. The initial datax(t) satisfies
x(t) = '(t) for t 2 [�h; 0] and' := f'(s): �h � s � 0g 2
C([�h; 0]; n). A; J; Ad; E1; C; E2 are known constant matrices
with appropriate dimensions.

As discussed in the introduction, the system in (1) and (2) is of the
neutral type and can thus represent certain important kinds of physical
systems. In this note, we consider the following full-order linear ob-
server:

_̂x(t)� J _̂x(t� h) = Ax̂(t) +Adx̂(t� h) +K[y(t)� Cx̂(t)] (3)

where the constant matrixK is the observer parameter vector to be
designed.

Let the error state be

e(t) = x(t)� x̂(t) (4)

then it follows from (1)–(3) that:

_e(t)� J _e(t� h) = Ace(t) + Ade(t� h) (5)

where

Ac := A �KC: (6)

Assumption 1:The matrixJ satisfiesJ 6= 0 andkJk < 1.
Now, observe the error dynamic system (5) and lete(t; �) denote the

state trajectory from at timet corresponding to the initial datae(�) =
�(�) on�h � � � 0 inC([�h; 0]; n). Clearly, the system (5) admits
a trivial solutione(t; 0) � 0 corresponding to the initial data� = 0
(see [8] and [11]). Also, sinceJ 6= 0, it follows from [7, Th. 7.2] that
the solutione(t) of (5) exists and is unique.

Definition 1: Given� 2 C([�h; 0]; n), the corresponding trivial
solution of the system (5) is asymptotically stable if

lim
t!1

je(t; �)j = 0 (7)

and is exponentially stable if there exist constants� > 0 and� > 0
such that

je(t; �)j � p
� e
��t=2 sup

�h���0
j�(�)j: (8)

Definition 2: The observer (3) is said to be an exponential (respec-
tively, asymptotic) observer if, for every� 2 C([�h; 0]; n), the cor-
responding error dynamics system (5) is exponentially (respectively,
asymptotically) stable.

The primary objective of this note is to design an exponential ob-
server for linear neutral time-delay system (1)–(2). To be specific, we
shall focus on the design of the observer parameter,K, such that the
error dynamic system (5) is exponentially stable, independent of the
time-delayh.

III. STABILITY ANALYSIS

In this section, we tackle the observer analysis problem. Suppose
that the observer parameter,K, is given. We shall establish sufficient
conditions under which linear neutral delay system (5) is exponentially
stable.

To begin with, we give a lemma that will be frequently used in de-
riving our main results.

Lemma 1: Let f 2 n, g 2 n and" > 0. Then, we havefT g +
gT f � "fT f + "�1gT g.

Proof: The proof follows from the inequality("1=2f �
"�1=2g)T ("1=2f � "�1=2g) � 0 immediately.

The next theorem will show that the exponential stability of the
system (5) is related to the existence of the positive definite solution
to an algebraic matrix equation, and, therefore, offer a key for solving
the addressed observer design problem.
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Theorem 1: Let the observer parameterK be given,R > 0 be a
positive–definite matrix and� > 0 be a sufficiently small scalar. If
there exist positive scalars"1; "2; "3 such that the following matrix
equation:

A
T
c P + PAc + "2A

T
c Ac + "1P

2 + "
�1
2 + "

�1
3 J

T
P
2
J

+ "
�1
1 + "3 A

T
dAd + �I +R = 0 (9)

has a solutionP > 0, then (5) is exponentially stable.
Proof: Fix � 2 C([��; 0]; n) arbitrarily and writee(t; �) =

e(t). For (e(t); t) 2 n � +, we define the following Lyapunov
function candidate:

V (e; t) = (e(t)� Je(t� h))TP (e(t)� Je(t� h))

+
t

t�h

e
T (s)Qe(s)ds (10)

whereP > 0 is a solution of matrix equation (9) andQ > 0 is defined
by

Q := "
�1
2 + "

�1
3 J

T
P
2
J + "

�1
1 + "3 A

T
dAd + �I: (11)

The derivative ofV along a given trajectory is obtained as

d

dt
V (e; t)

= e
T (t)AT

c Pe(t) + e
T (t)PAce(t) + e

T (t)PAde(t� h)

+ e
T (t� h)AT

d Pe(t)� e
T (t)AT

c PJe(t� h)

� e
T (t� h)JTPAce(t)� e

T (t� h)AT
d PJe(t� h)

� e
T (t� h)JTPAde(t� h) + e

T (t)Qe(t)

� e
T (t� h)Qe(t� h): (12)

Let"1; "2; "3 be positive scalars. It then follows from Lemma 1 that:

e
T (t)PAde(t�h)+e

T (t�h)AT
d Pe(t)

� "1e
T (t)P 2

e(t)+"�11 e
T (t�h)AT

d Ade(t�h) (13)

�eT (t)AT
c PJe(t�h)�e

T (t�h)JTPAce(t)

� "2e
T (t)AT

c Ace(t)+"
�1
2 e

T (t�h)JTP 2
Je(t�h) (14)

�eT (t� h)AT
d PJe(t� h)� e

T (t� h)JTPAde(t� h)

� "3e
T (t� h)AT

d Ade(t� h)

+ "
�1
3 e

T (t� h)JTP 2
Je(t� h): (15)

For simplicity, we denote

� := A
T
c P + PAc + "2A

T
c Ac + "1P

2 +Q (16)

whereQ is defined in (11), and then (9) and (11) indicate that� =
�R < 0.

Substituting (11), (13)–(15) into (12) yields

d

dt
V (e; t) � e

T (t)�e(t)� �e
T (t� h)e(t� h)

=
e(t)

e(t� h)

T
� 0

0 ��

e(t)

e(t� h)

��min(�min(��); � )
e(t)

e(t� h)

2

��min(�min(��); � )je(t)j2 < 0 (17)

which implies from Assumption 1 and [6] that the system (5) is asymp-
totically stable.

In order to show the exponential stability, we need to make some
standard manipulations on the relation (17) by utilizing the technique
developed in [11] and [13]. The details are along the similar line of the
proof of [11, Th. 2.1], and are thus omitted. Here, we just mention that,
for the exponential stability of (5), the required constant� > 0 in (8)
is the unique root of the equation

min(�min(��); �)� ��max(P )� �h�max(Q)e�h = 0 (18)

and the required constant� > 0 can be determined by

� := �
�1
min(P ) �max(P ) + h�max(Q) 1 + he

�h
:

This completes the proof of Theorem 1.
Remark 1: The use of the matrixR > 0 is just to ensure that� < 0.

In general, this positive–definite matrix should be chosen sufficiently
small in a matrix norm sense.

Remark 2: In Theorem 1, the analysis results for the exponential
stability of the error dynamic system (5) are established. Note that the
results also hold for general linear neutral-type delay systems. It is
shown that the addressed observer design problem is solvable if the
solution to an algebraic matrix equation is known to exist. The results
in Theorem 1 may be conservative due to the use of the inequalities in
(13)–(15). However, the conservatism can be significantly reduced in a
matrix norm sense by appropriate choices of the parameters"1; "2; "3.
For the relevant discussion and corresponding optimization algorithm,
we refer the reader to [18] and the references therein.

Remark 3: As mentioned in Section I, different from most existing
literature, we do not need to conduct a spectral analysis and reassign
the unstable neutral root chain when testing the stability of a neutral
system. Theorem 1 shows that the stability of a neutral system is only
related to the solution of an algebraic Riccati-like equation, and thus
provides us with a more convenient way to deal with the stability of
the neutral system.

IV. OBSERVERDESIGN

We shall focus on the observer design problem in this section. Note
that since the pioneering work of Luenberger, significant advances
have been made in the observer theory. Owing to its utility and its
intimate connection with fundamental system concepts, the observer
theory has long been one of the cornerstones of modern system theory,
and has been substantially developed in many different directions,
such as system monitoring and regulation, fault identification and
detection.

Based on Theorem 1, the task of this section can be divided into two
parts. The first is to derive the conditions under which there exists an
observer gain matrix,K, such that the matrix equation (9) holds for
some positive scalars"1; "2; "3 and positive definite matrixR > 0.
The second is to parameterize the desired observer gains, if they exist.

In the sequel, the following lemma is needed.
Lemma 2 [5]: Let X 2 m�n andY 2 m�p (m � p). There

exists a matrixV that satisfies simultaneously

Y = XV V V
T = I

if and only if

XX
T = Y Y

T
:

In this case, a general solution forV can be expressed as

V =VX
I 0

0 U
V
T
Y ; U 2 (n�r )�(p�r )

; UU
T = I (19)
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whereVX andVY come from the singular value decomposition ofX

andY , respectively

X =UX
ZX 0

0 0
V
T
X = [UX1 UX2 ]

ZX 0

0 0

V T
X1

V T
X2

(20)

Y =UY
ZY 0

0 0
V
T
Y = [UY 1 UY 2 ]

ZY 0

0 0

V T
Y 1

V T
Y 2

(21)

andrX = rank(X), UX = UY , ZX = ZY .
Now, to obtain the conditions for the existence of a desired observer

gain,K, we can rearrange (9) as follows:

A
T
P + PA + "1P

2 + "2A
T
A+ "

�1
2 + "

�1
3 J

T
P
2
J

+ "
�1
1 + "3 A

T
d Ad +R+ �I +�(K) = 0 (22)

where

�(K) =�(KC)T (P + "2A)� (P + "2A)
T (KC)

+ (KC)T ("2I)(KC)

= "
1=2
2 (KC)T � "

�1=2
2 P + "2A

T

� "
1=2
2 (KC)T � "

�1=2
2 P + "2A

T
T

� "
�1
2 P + "2A

T
P + "2A

T
T

(23)

and (22) can be equivalently written by

"
�1
2 �"1 P

2
� "

�1
1 + "3 A

T
dAd� "

�1
2 + "

�1
3 J

T
P
2
J�R��I

= "
1=2
2 (KC)T � "

�1=2
2 P + "2A

T

� "
1=2
2 (KC)T � "

�1=2
2 P + "2A

T
T

: (24)

Notice that the right-hand side of (24) is positive–semidefinite. Ob-
viously, one of the necessary conditions for the existence of a desired
observer gain is


 := "
�1
2 � "1 P

2
� "

�1
1 + "3 A

T
dAd

� "
�1
2 + "

�1
3 J

T
P
2
J � R� �I � 0: (25)

Now, assume that (25) is true and let
1=2 be the square root of
.
Then, (9) or (24) becomes

"
1=2
2 (KC)T � "

�1=2
2 P + "2A

T

� "
1=2
2 (KC)T � "

�1=2
2 P + "2A

T
T

= 
1=2 
1=2
T

: (26)

Lemma 2 implies that (26) holds if and only if there exists an orthog-
onal matrixV (V 2 n�n) satisfying

"
1=2
2 (KC)T � "

�1=2
2 P + "2A

T = 
1=2
V (27)

or

C
T
K
T = "

�1=2
2 
1=2

V + "
�1
2 P + "2A

T
: (28)

It follows from [1] that, there exists an orthogonal matrixV such
that (28) has a solution forK, if and only if there exists an orthogonal
matrix V such that

I � C
T
C
T

+

"
�1=2
2 
1=2

V + "
�1
2 P + "2A

T = 0 (29)

where(CT )+ denotes the Moore–Penrose inverse ofCT .

By defining

X := "
�1=2
2 I � C

T
C
T

+


1=2 (30)

Y :=�"
�1
2 I � C

T
C
T

+

P + "2A
T (31)

we can easily rewrite (29) as

XV = Y (32)

which is, again by Lemma 2, equivalent to

XX
T = Y Y

T
: (33)

SinceI � CT (CT )+ is symmetric, (33) can be expressed as

I � C
T

C
T

+


� "
�1
2 P + "2A

T
P + "2A

T
T

� I � C
T
C
T

+

= 0 (34)

where
 is defined in (25).
We can see from the above derivation that, given scalars"1 > 0,

"2 > 0, "3 > 0, � > 0 and a matrixR > 0, the solvability problem
for an observer gain matrixK to satisfy (9) is equivalent to that for a
matrixP > 0 to satisfy both (25) and (34).

To this end, we sum up the above results in the following theorem
that offers the conditions for the existence of a observer gain matrixK

such that matrix equation (9) holds.
Theorem 2: There exist positive scalars"1; "2; "3; �, a matrixR >

0 and an observer gain matrixK such that (9) holds, if and only if there
exist positive scalars"1; "2; "3; � and matrixR > 0 such that (25) and
(34) have a solutionP > 0.

Next, prior to characterizing the set of the desired observer gains, we
introduce the singular value decompositions (20) and (21), whereX,
Y are defined in (30), (31), respectively.

Suppose now that the conditions of Theorem 2 are satisfied. It fol-
lows from [1] that a general solution to (28) is given by

K = C
T

+

"
�1=2
2 
1=2

V + "
�1
2 P + "2A

T

+ I � C
T

+

C
T

Z

T

(35)

whereZ 2 p�n is arbitrary,V is any orthogonal matrix satisfying
XV = Y and can be expressed, by Lemma 2, as

V = VX
I 0

0 U
V
T
Y U 2

(n�r )�(p�r ) (36)

where the matrixU is arbitrary orthogonal,rX = rank(X).
We are now ready to characterize all desired observer gains satis-

fying (9) by substituting (36) into (35).
Theorem 3: Assume that the conditions of Theorem 2 are satisfied.

Then the set of all observer gains satisfying (9) is parameterized by

K = K: K = C
T

+

"
�1=2
2 
1=2

VX
I 0

0 U
V
T
Y

+ "
�1
2 P + "2A

T + I � C
T

+

C
T

Z

T

(37)

whereP > 0 is a solution to (25) and (34),
 is defined in (25),VX
andVY come from the singular value decomposition ofX andY in
(20) and (21),Z 2 p�n is arbitrary, andU 2 (n�r )�(p�r ) is
arbitrary orthogonal,rX = rank(X).
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Finally, our main results, which are easily deduced from Theorems
1, 2, and 3, are summarized in the following corollary.

Corollary 1: Consider linear neutral delay system (1)–(2). If there
exist positive scalars"1; "2; "3; � and matrixR > 0 such that (25)
and (34) have a solutionP > 0, then corresponding to the observer (3)
whose gain matrix is determined by (37), the estimation error dynamic
system (5) is exponentially stable.

Remark 4: It is worth mentioning that, the set of the desired ob-
server gains, when it is not empty, must be very large because of the
freedesign parameters in the expression of observer gains, such asU ,
Z. This yields much design freedom that offers the possibility for di-
rectly achieving further performance requirements on the estimation
process, such as the transient property,H2-norm constraint and reli-
ability behavior. In particular, for the application of the freedom (in
choosing an orthogonal matrix) contained in the parameterization of a
set of filters, we refer the reader to [10]. This probably gives a special
feature to the results obtained in the present note.

Remark 5: In practice, we often wish to solve (25) and (34), and
then construct the desired observer gains from (37) directly. In general,
this can be done as follows. First, the scalar parameters"1; "2; "3 can
be determined by using the optimization approach proposed in [18]
and the references therein, respectively, in order to reduce the possible
conservatism that may result from the inequalities (13)–(15). Then, we
can solve the following linear matrix inequality (LMI)


1 := "
�1

2 � "1 P
2
� "

�1

1 + "3 A
T
dAd

� "
�1

2 + "
�1

3 J
T
P
2
J � �I > 0 (38)

for P 2 by using the powerful Matlab LMI toolbox, and hence obtain
P > 0. Next, we can solve the linear matrix equation (34) forR > 0
satisfyingR � 
1 or (25) (in the simplest case, we could takeR =

1), and obtain a set of desired observer gains from (37).

V. NUMERICAL EXAMPLE

In this section, an example is presented to demonstrate the effective-
ness and flexibility of the proposed observer design approach.

Consider linear neutral delay system (1)–(2) with

A =
2:5 �0:5

0 �3
Ad =

0:1 �0:05

0:03 0:1

C = [ 1 0 ] J = 0:1I2

Set� = 0:0022. Using the method discussed in Remark 5 of Sec-
tion IV, we may choose the appropriate parameters"1; "2; "3, and ob-
tainP and
1 as follows:

"1 =0:3284 "2 = 0:2072; "3 = 6:1159

P =
2:4886 0:0002

0:0002 0:7052

1 =

27:4447 0:0212

0:0212 2:0953
:

Assume that the positive–definite matrixR has the form
R = [rij ]2�2 (i; j = 1; 2). The condition (34) indicates that
r22 = 2:01. Furthermore, subject to another constraint (25), we can
select other elements ofR asr11 = 4, r12 = r21 = 0:05, and thus
obtain the matrixR, and subsequently matrices
, VX , VY as the
following:

R =
4:0000 0:0500

0:0500 2:0100

 =

23:4447 �0:0288

�0:0288 0:0853

VX =
�0:0192 0:9998

0:9998 0:0192
VY =

�0:7776 0:6287

0:6287 0:7776
:

Let us now consider the analytical expression (37). In this case, since
I � (CT )+CT = 0, the matrixZ does not affect the solution. Hence,
substitutingU = 1 andU = �1 into this expression leads to the
following two desired observer gains:

K1 =
21:3658

8:1347
K2 =

7:9928

�8:4055
:

If we chooseR = diagf3; 2:01g, then the desired observer gains
corresponding toU = 1 andU = �1 are, respectively

K1 =
7:8062

�8:5446
K2 =

21:4627

8:3463
:

It is not difficult to test that, with all obtained four observer gains, the
prespecified exponential stability constraint on the estimation process
is met.

VI. CONCLUSION

This note has studied the observer design problem for a class of
continuous-time neutral delay systems. A modified algebraic matrix
equation approach has been developed to construct linear full-order ob-
servers assuring exponential stability for the estimation error system,
irrespective of the time delay. By using the generalized inverse theory
and singular value decomposition technique, we have derived both the
existence conditions and the analytical expression of the desired ob-
servers. A numerical example has demonstrated the effectiveness and
flexibility of the present design approach.

We have emphasized that there exist much design freedom that can
be used to directly meet other performance requirements, such as the
constraints on theH2 norm of the transfer function from possible noise
input to estimation error output. The main results can also be extended
to the parameter uncertain systems. These will be the subjects of further
investigations.
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An Adaptive Compensator for a Class of Linearly
Parameterized Systems

Jeng-Tze Huang

Abstract—A compensation design for a class of linearly parameterized
systems is presented. The compensator consists of a typical linearizing con-
trol and an adaptive observer for online estimation of the system’s pa-
rameters. The proposed method achieves the asymptotic stability of the
tracking and the estimation error dynamics, provided the basis functions in
the regressor vector are linearly independent in terms of the desired system
states. No persistent excitation and measurement of the highest derivatives
of the system states are required. A numerical example is given to demon-
strate the validity of the proposed design.

Index Terms—Adaptive observers, basis function, linear independence.

I. INTRODUCTION

Parameter uncertainty, which may arise due to a lack of precise
knowledge of the system parameters and/or external structured
disturbances, is often encountered in the control of a dynamical
system and degrades the tracking performance. When bounds of
uncertainty are available, robust control methods provide simple and
straightforward solutions to the issue for guaranteeing the practical
stability of the tracking error dynamics [1]. However, the system may
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exhibit unwanted chattering behavior due to conservative bounds of
uncertainty. For structured linear-in-parameter uncertainty, standard
adaptive control methodologies apply to ensure the asymptotic
stability of the tracking error dynamics. However, exact parameter
estimation can only be obtained under the condition of persistent
excitation, which is impossible to verify its fulfillment in advance
for typical feedback designs [2]. Therefore, more efficient designs
releasing such criteria are in demand for applications requiring online
parameter identification as well.

Specifically, it is first noted that the adaptive observer in [3] fulfilled
that need for a servo system with Coulomb friction. The author ex-
tended the results to compensate friction modeled by Coulomb plus
a linear viscous friction in [4]. Comparing to typical adaptive control
schemes as in [5], these designs are superior in that the friction is iden-
tified correctly in addition to asymptotic tracking performance without
relying on persistent excitation. However, they are useful exclusively
for the linear friction cases, occupying only a minor fraction of ap-
plications demanding the same goals. For further extensions, an adap-
tive compensation design for a class of linearly parameterized systems
is proposed in this note. The design consists of a linearizing control
and an adaptive nonlinear observer for estimating the actual parame-
ters. It achieves the asymptotic stability of the tracking and the esti-
mation error dynamics provided the basis functions in the regressor
vector are linearly independent in terms of the desired states. In con-
trast to standard adaptive algorithms, such conditions can be verified
in advance. Moreover, no persistent excitation and measurement of the
highest derivatives of the system states are required. Hence, it is ap-
pealing to practical applications. A case study via simulation is under-
taken to demonstrate its validity.

The paper is organized as follows. A statement about the concerned
problem is given in Section II. The proposed compensation design is
described in Section III. To demonstrate the validity of the proposed
design, a case study of a one-dimensional servo system with friction is
undertaken in Section IV. Finally, conclusions are made in Section V.

II. PROBLEM STATEMENT

Consider a class of linearly parameterized systems described by

_x1 =x2

...

_xn�1 =xn

_xn =u� F (�; x) (1)

wherex = [x1; x2; . . . ; xn�1; xn]
T
2 Rn is the system state vector;

u 2 R is the control input;F (�; x) 2 R is the unknown structured
uncertainty and� 2 Rr is the unknown parameter vector. In the rest of
this note,F (�; x) is assumed to be expressible as a linear combination
of a set ofknownbasis functions, i.e.,

F (�; x) = �
T
�(x) =

r

i=1

�i�i(x) (2)

where�i(x); i = 1; . . . ; r are the corresponding basis functions of
the regressor vector�(x). Meanwhile,�(x) is assumed to be continu-
ously differentiable inx and is bounded for bounded states. It is noted
that the expression in (2) covers a wide variety of applications.

Given a desired trajectoryxd(t) = [xd1; . . . ; x
d

n�1; x
d

n]
T , the con-

trol objective is to drivex(t) ! xd(t) ast ! 1 and identify� cor-
rectly. A typical linearizing control foru(t) in (1) is adopted

u(t) = _xdn + k
T
e+ �̂

T (t)�(x) (3)
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