1,767 research outputs found

    Design Optimization of High Frequency Transformer for Dual Active Bridge DC-DC Converter

    Get PDF
    This paper presents a design optimization procedure for high frequency transformer (HFT) employed in bidirectional dual active bridge (DAB) isolated DC-DC converter. It is shown that leakage inductance, phase-shifted angle, skin and proximity effects have to be taken into account together with the HFT voltage-ampere rating to minimize total losses. It is also demonstrated that the leakage inductance required for zero voltage switching operation can be realized under the proposed design procedure without employing extra inductor. The proposed design methodology is experimentally validated by measurements on a prototype HFT

    Modelling and Interpreting The Effects of Spatial Resolution on Solar Magnetic Field Maps

    Full text link
    Different methods for simulating the effects of spatial resolution on magnetic field maps are compared, including those commonly used for inter-instrument comparisons. The investigation first uses synthetic data, and the results are confirmed with {\it Hinode}/SpectroPolarimeter data. Four methods are examined, one which manipulates the Stokes spectra to simulate spatial-resolution degradation, and three "post-facto" methods where the magnetic field maps are manipulated directly. Throughout, statistical comparisons of the degraded maps with the originals serve to quantify the outcomes. Overall, we find that areas with inferred magnetic fill fractions close to unity may be insensitive to optical spatial resolution; areas of sub-unity fill fractions are very sensitive. Trends with worsening spatial resolution can include increased average field strength, lower total flux, and a field vector oriented closer to the line of sight. Further-derived quantities such as vertical current density show variations even in areas of high average magnetic fill-fraction. In short, unresolved maps fail to represent the distribution of the underlying unresolved fields, and the "post-facto" methods generally do not reproduce the effects of a smaller telescope aperture. It is argued that selecting a method in order to reconcile disparate spatial resolution effects should depend on the goal, as one method may better preserve the field distribution, while another can reproduce spatial resolution degradation. The results presented should help direct future inter-instrument comparisons.Comment: Accepted for publication in Solar Physics. The final publication (including full-resolution figures) will be available at http://www.springerlink.co

    Numerical simulation of the massive scalar field evolution in the Reissner-Nordstr\"{o}m black hole background

    Full text link
    We studied the massive scalar wave propagation in the background of Reissner-Nordstr\"{o}m black hole by using numerical simulations. We learned that the value MmMm plays an important role in determining the properties of the relaxation of the perturbation. For Mm<<1Mm << 1 the relaxation process depends only on the field parameter and does not depend on the spacetime parameters. For Mm>>1Mm >> 1, the dependence of the relaxation on the black hole parameters appears. The bigger mass of the black hole, the faster the perturbation decays. The difference of the relaxation process caused by the black hole charge QQ has also been exhibited.Comment: Accepted for publication in Phys. Rev.

    Quasinormal modes of a Schwarzschild black hole surrounded by free static spherically symmetric quintessence: Electromagnetic perturbations

    Full text link
    In this paper, we evaluated the quasinormal modes of electromagnetic perturbation in a Schwarzschild black hole surrounded by the static spherically symmetric quintessence by using the third-order WKB approximation when the quintessential state parameter wq w_{q} in the range of 1/3<wq<0-1/3<w_{q}<0. Due to the presence of quintessence, Maxwell field damps more slowly. And when at 1<wq<1/3-1<w_{q}<-1/3, it is similar to the black hole solution in the ds/Ads spacetime. The appropriate boundary conditions need to be modified.Comment: 6 pages, 3 figure

    Feed-forward Torque Control of Interior Permanent Magnet Brushless AC Drive for Traction Applications

    Get PDF
    This paper presents a feed-forward torque control (FTC) technique for interior permanent magnet (IPM) brushless AC (BLAC) drives in traction applications. It is shown that by adopting the Newton-Raphson iterative method for solving the proposed high-order nonlinear relationship between the torque demand, flux-linkage and desirable dq-axis currents, FTC with due account of nonlinear machine parameters can be achieved for IPM BLAC drives. It is also proven that the comparison between the reference voltage magnitudes under maximum torque per ampere (MTPA) and field-weakening (FW) operations together with online base speed determination can be utilized for FW operation activation to achieve full exploitation of the available DC-link voltage during the transition between the constant torque and FW operation regions. Since both the dqaxis current references and the base speed for FW operation activation are computed online, the proposed FTC technique provides flexibility for online parameter update or estimation and is able to cope with wide DC-link voltage variation. The proposed FTC strategy is experimentally validated by measurements on a 10kW wide constant power speed range (CPSR) IPM BLAC machine drive

    The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?

    Get PDF
    Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was a complex region containing current helicity flux of opposite signs. The main positive sunspots were dominated by negative helicity fields, while positive helicity patches persisted both inside and around the main positive sunspots. Based on a comparison of two days of deduced current helicity density, pronounced changes were noticed which were associated with the occurrence of an X10 flare that peaked at 20:49 UT, 2003 October 29. The average current helicity density (negative) of the main sunspots decreased significantly by about 50. Accordingly, the helicity densities of counter-helical patches (positive) were also found to decay by the same proportion or more. In addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100 keV energy range. The cores of these two HXR footpoints were adjacent to the positions of two patches with positive current helicity which disappeared after the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted from reconnection between magnetic flux tubes having opposite current helicity. Finally, the global decrease of current helicity in AR 10486 by ~50% can be understood as the helicity launched away by the halo coronal mass ejection (CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres

    Nature of singularity formed by the gravitational collapse in Husain space-time with electromagnetic field and scalar field

    Full text link
    In this work, we have investigated the outcome of gravitational collapse in Husain space-time in the presence of electro-magnetic and a scalar field with potential. In order to study the nature of the singularity, global behavior of radial null geodesics have been taken into account. The nature of singularities formed has been thoroughly studied for all possible variations of the parameters. These choices of parameters has been presented in tabular form in various dimensions. It is seen that irrespective of whatever values of the parameters chosen, the collapse always results in a naked singularity in all dimensions. There is less possibility of formation of a black hole. Hence this work is a significant counterexample of the cosmic censorship hypothesis.Comment: 9 pages, 19 figure

    Field propagation in de Sitter black holes

    Get PDF
    We present an exhaustive analysis of scalar, electromagnetic and gravitational perturbations in the background of Schwarzchild-de Sitter and Reissner-Nordstrom-de Sitter spacetimes. The field propagation is considered by means of a semi-analytical (WKB) approach and two numerical schemes: the characteristic and general initial value integrations. The results are compared near the extreme cosmological constant regime, where analytical results are presented. A unifying picture is established for the dynamics of different spin fields.Comment: 15 pages, 16 figures, published versio

    A spatio-temporal description of the abrupt changes in the photospheric magnetic and Lorentz-force vectors during the 2011 February 15 X2.2 flare

    Full text link
    The active region NOAA 11158 produced the first X-class flare of Solar Cycle 24, an X2.2 flare at 01:44 UT on 2011 February 15. Here we analyze SDO/HMI magnetograms covering a 12-hour interval centered at the time of this flare. We describe the spatial distributions of the photospheric magnetic changes associated with this flare, including the abrupt changes in the field vector, vertical electric current and Lorentz force vector. We also trace these parameters' temporal evolution. The abrupt magnetic changes were concentrated near the neutral line and in two neighboring sunspots. Near the neutral line, the field vectors became stronger and more horizontal during the flare and the shear increased. This was due to an increase in strength of the horizontal field components near the neutral line, most significant in the horizontal component parallel to the neutral line but the perpendicular component also increased in strength. The vertical component did not show a significant, permanent overall change at the neutral line. The increase in total flux at the neutral line was accompanied by a compensating flux decrease in the surrounding volume. In the two sunspots near the neutral line the azimuthal flux abruptly decreased during the flare but this change was permanent in only one of the spots. There was a large, abrupt, downward vertical Lorentz force change during the flare, consistent with results of past analyses and recent theoretical work. The horizontal Lorentz force acted in opposite directions along each side of neutral line, with the two sunspots at each end subject to abrupt torsional forces. The shearing forces were consistent with field contraction and decrease of shear near the neutral line, whereas the field itself became more sheared as a result of the flux collapsing towards the neutral line from the surrounding volume.Comment: DOI 10.1007/s11207-012-0071-0. Accepted for publication in Solar Physics SDO3 Topical Issue. Some graphics missing due to 15MB limi

    Two-Dimensional Spectroscopy of Photospheric Shear Flows in a Small delta Spot

    Full text link
    In recent high-resolution observations of complex active regions, long-lasting and well-defined regions of strong flows were identified in major flares and associated with bright kernels of visible, near-infrared, and X-ray radiation. These flows, which occurred in the proximity of the magnetic neutral line, significantly contributed to the generation of magnetic shear. Signatures of these shear flows are strongly curved penumbral filaments, which are almost tangential to sunspot umbrae rather than exhibiting the typical radial filamentary structure. Solar active region NOAA 10756 was a moderately complex, beta-delta sunspot group, which provided an opportunity to extend previous studies of such shear flows to quieter settings. We conclude that shear flows are a common phenomenon in complex active regions and delta spots. However, they are not necessarily a prerequisite condition for flaring. Indeed, in the present observations, the photospheric shear flows along the magnetic neutral line are not related to any change of the local magnetic shear. We present high-resolution observations of NOAA 10756 obtained with the 65-cm vacuum reflector at Big Bear Solar Observatory (BBSO). Time series of speckle-reconstructed white-light images and two-dimensional spectroscopic data were combined to study the temporal evolution of the three-dimensional vector flow field in the beta-delta sunspot group. An hour-long data set of consistent high quality was obtained, which had a cadence of better than 30 seconds and sub-arcsecond spatial resolution.Comment: 23 pages, 6 gray-scale figures, 4 color figures, 2 tables, submitted to Solar Physic
    corecore