14,636 research outputs found

    First principles calculation of ac conductance for Al-BDT-Al and Al-Cn-Al systems

    Get PDF
    We perform first-principles calculation to investigate the dynamic conductance of atomic wires of the benzenedithiol (BDT) as well as carbon chains with different length in contact with two Al(100) electrodes (Al-Cn-Al). Our calculation is based on the combination of the non-equilibrium Green's function and the density functional theory. For ac conductance, there are two theories that ensures the current conservation: (1). the global formula which is a phenomenological theory that partitions the total displacement current into each leads so that the current is conserved.(2). the local formula which is a microscopic theory that includes Coulomb interaction explicitly so that the current is conserved automatically. In this work, we use the local formula to calculate the dynamic conductance, especially the emittance. We give a detailed comparison and analysis for the results obtained from two theories. Our numerical results show that the global formula overestimates the emittance by two orders of magnitude. We also obtain an inequality showing that the emittance from global formula is greater than that from local formula for real atomic structures. For Al-Cn-Al structures, the oscillatory behavior as the number of carbon chain N varies from even to odd remains unchanged when local formula is used. However, the prediction of local formula gives rise to opposite response when N is odd (inductive-like) as compared with that of global formula. Therefore, one should use the local formula for an accurate description of ac transport in nanoscale structures. In addition, the ‘size effect’ of the ac emittance is analyzed and can be understood by the kinetic inductance. Since numerical calculation using the global formula can be performed in orbital space while the local formula can only be used in real space, our numerical results indicate that the calculation using the local formula is extremely computational demanding.published_or_final_versio

    Comparison of 20nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages

    Get PDF
    Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies

    Inert gas clearance from tissue by co-currently and counter-currently arranged microvessels

    Get PDF
    To elucidate the clearance of dissolved inert gas from tissues, we have developed numerical models of gas transport in a cylindrical block of tissue supplied by one or two capillaries. With two capillaries, attention is given to the effects of co-current and counter-current flow on tissue gas clearance. Clearance by counter-current flow is compared with clearance by a single capillary or by two co-currently arranged capillaries. Effects of the blood velocity, solubility, and diffusivity of the gas in the tissue are investigated using parameters with physiological values. It is found that under the conditions investigated, almost identical clearances are achieved by a single capillary as by a co-current pair when the total flow per tissue volume in each unit is the same (i.e., flow velocity in the single capillary is twice that in each co-current vessel). For both co-current and counter-current arrangements, approximate linear relations exist between the tissue gas clearance rate and tissue blood perfusion rate. However, the counter-current arrangement of capillaries results in less-efficient clearance of the inert gas from tissues. Furthermore, this difference in efficiency increases at higher blood flow rates. At a given blood flow, the simple conduction-capacitance model, which has been used to estimate tissue blood perfusion rate from inert gas clearance, underestimates gas clearance rates predicted by the numerical models for single vessel or for two vessels with co-current flow. This difference is accounted for in discussion, which also considers the choice of parameters and possible effects of microvascular architecture on the interpretation of tissue inert gas clearance

    Cloning and characterization of a nitrite reductase gene related to somatic embryogenesis in Gossypium hirsutum

    Get PDF
    A nitrite reductase gene related to somatic embryogenesis was first cloned from Gossypium hirsutum. The cDNA sequence of the gene, named GhNiR, is 2,257 bp in length, with 254 bp of the 5’ untranslated region and 236 bp of the 3’ untranslated region. The open reading frame is 1,767 bp in length, encoding a deduced amino acid sequence of 588 residues with a molecular weight of 65.722 kDa and an isoelectric point of 7.07. Semi-quantitative RT-PCR analysis showed that the expression level of GhNiR was higher in embryogenic calli and somatic embryoids than in nonembryogenic calli among different somatic embryogenesis stages, and that the level of GhNiR mRNA was also higher in the cultivar with higher somatic embryogenesis ability. The catalytic GhNiR was verified by transformation in E. coli BL21 (DE3) strain with the recombinant expression vector pET-28A-GhNiR. NiR activity assay showedthat the crude GhNiR protein had obvious activity to NaNO2 substrate

    How Polarized Have We Become? A Multimodal Classification of Trump Followers and Clinton Followers

    Full text link
    Polarization in American politics has been extensively documented and analyzed for decades, and the phenomenon became all the more apparent during the 2016 presidential election, where Trump and Clinton depicted two radically different pictures of America. Inspired by this gaping polarization and the extensive utilization of Twitter during the 2016 presidential campaign, in this paper we take the first step in measuring polarization in social media and we attempt to predict individuals' Twitter following behavior through analyzing ones' everyday tweets, profile images and posted pictures. As such, we treat polarization as a classification problem and study to what extent Trump followers and Clinton followers on Twitter can be distinguished, which in turn serves as a metric of polarization in general. We apply LSTM to processing tweet features and we extract visual features using the VGG neural network. Integrating these two sets of features boosts the overall performance. We are able to achieve an accuracy of 69%, suggesting that the high degree of polarization recorded in the literature has started to manifest itself in social media as well.Comment: 16 pages, SocInfo 2017, 9th International Conference on Social Informatic

    A transfer-learning approach to feature extraction from cancer transcriptomes with deep autoencoders

    Get PDF
    Publicado en Lecture Notes in Computer Science.The diagnosis and prognosis of cancer are among the more challenging tasks that oncology medicine deals with. With the main aim of fitting the more appropriate treatments, current personalized medicine focuses on using data from heterogeneous sources to estimate the evolu- tion of a given disease for the particular case of a certain patient. In recent years, next-generation sequencing data have boosted cancer prediction by supplying gene-expression information that has allowed diverse machine learning algorithms to supply valuable solutions to the problem of cancer subtype classification, which has surely contributed to better estimation of patient’s response to diverse treatments. However, the efficacy of these models is seriously affected by the existing imbalance between the high dimensionality of the gene expression feature sets and the number of sam- ples available for a particular cancer type. To counteract what is known as the curse of dimensionality, feature selection and extraction methods have been traditionally applied to reduce the number of input variables present in gene expression datasets. Although these techniques work by scaling down the input feature space, the prediction performance of tradi- tional machine learning pipelines using these feature reduction strategies remains moderate. In this work, we propose the use of the Pan-Cancer dataset to pre-train deep autoencoder architectures on a subset com- posed of thousands of gene expression samples of very diverse tumor types. The resulting architectures are subsequently fine-tuned on a col- lection of specific breast cancer samples. This transfer-learning approach aims at combining supervised and unsupervised deep learning models with traditional machine learning classification algorithms to tackle the problem of breast tumor intrinsic-subtype classification.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Preparation and characterization of adherent autocatalytically deposited nickel coating on carbon fiber

    Get PDF
    In the present study carbon fibers were successfully coated with nanocrystalline nickel using an acidic bath by electroless plating method. Coating thickness obtained was about 1.5 microns beyond that there was coating delamination. Coated fibers were characterized for various properties such as morphology, composition, structure, phase transformation temperature, resistivity and tensile strength. Field emission scanning electron microscope (FESEM) studies revealed that the coating showed nodular morphology. Energy dispersive analysis of X-ray (EDAX) showed that the coating containing about 10.5 wt.% P with balance Ni. Structural studies carried out on these coated fibers exhibited two major diffraction peaks and were assigned as C (002) and Ni (111). Differential scanning calorimetry (DSC) studies on these coated fibers exhibited a single exothermic peak at 3510C. Activation energy obtained for the crystallization process of high P deposit is about 215.9 kJ/mol. Bulk resistivity was measured using four-probe technique over a single coated fiber and the obtained value was around 3.2 μΩ-m. Tensile strength of these coated fibers were also carried out and observed that not much variation found in the strength of coated and uncoated fibers

    Quantum dissipation and broadening mechanisms due to electron-phonon interactions in self-formed InGaN quantum dots

    Get PDF
    Quantum dissipation and broadening mechanisms in Si-doped InGaN quantum dots are studied via the photoluminescence technique. It is found that the dissipative thermal bath that embeds the quantum dots plays an important role in the photon emission processes. Observed spontaneous emission spectra are modeled with the multimode Brownian oscillator model achieving an excellent agreement between experiment and theory for a wide temperature range. The dimensionless Huang-Rhys factor characterizing the strength of electron-LO-phonon coupling and damping constant accounting for the LO-phonon-bath interaction strength are found to be ∼0.2 and 200 cm-1, respectively, for the InGaN QDs. © 2006 American Institute of Physics.published_or_final_versio

    Expor para divulgar: a memória das exposições de eletricidade e rádio e eletricidade realizadas em Portugal nas décadas de 20 e 30 do século XX

    Get PDF
    Esta dissertação aborda as exposições de eletricidade e as exposições de rádio e eletricidade realizadas em Portugal nas décadas de 1920 e 1930, com os objetivos de conhecer os objetos elétricos do quotidiano doméstico e recuperar a memória destas exposições como eventos importantes na divulgação das aplicações de eletricidade. O estudo dos objetos de uso do quotidiano que estiveram presentes nos stands dos certames liga-se com a necessária valorização do património móvel de eletricidade, que tem sido pouco estudado, preservado e valorizado em Portugal. Como propostas de valorização patrimonial apresentam-se: a construção de um website sobre a “V Exposição de Rádio e Electricidade”, realizada em 1934 no Palácio de Exposições do Parque Eduardo VII e um inventário do património móvel de uso doméstico realizado com base numa ficha construída por nós; a realização de uma possível exposição temporária onde os objetos inventariados seriam expostos ao público; Expose to Disclose - The Memory of Electricity and Radio and Electricity Exhibitions held in Portugal in the 20s and 30s of the XXº century. Abstract :This dissertation focus on the electricity and radio and electricity exhibitions held in Portugal in the 1920s and 1930s. Its main goals are to improve the knowledge about everyday domestic electrical appliances to recover the memory of these exposures, as important events in the dissemination of applications of electricity. The study of the everyday domestic electrical appliances which were in the stands during this exhibitions binds with the necessary enhancement of the electrical movable heritage, which has been rarely studied, preserved, and valued in Portugal. The proposals for asset valuation are: the construction of a website about the "V Exposição de Rádio e Electricidade" held in 1934 at the Palácio de Exposições of Parque Eduardo VII; the inventory of movable heritage household using a record built by us and finally the realization of a temporary exhibition where objects inventoried would be exposed to the public
    corecore