5,799 research outputs found

    Development of novel electrolyte materials for a new generation of low-temperature SOFCs

    Get PDF
    Issued as final reportNissan Motor

    Surface reconstruction of wear in carpets by using a wavelet edge detector

    Get PDF
    Carpet manufacturers have wear labels assigned to their products by human experts who evaluate carpet samples subjected to accelerated wear in a test device. There is considerable industrial and academic interest in going from human to automated evaluation, which should be less cumbersome and more objective. In this paper, we present image analysis research on videos of carpet surfaces scanned with a 3D laser. The purpose is obtaining good depth Images for an automated system that should have a high percentage of correct assessments for a wide variety of carpets. The innovation is the use of a wavelet edge detector to obtain a more continuously defined surface shape. The evaluation is based on how well the algorithms allow a good linear ranking and a good discriminance of consecutive wear labels. The results show an improved linear ranking for most carpet types, for two carpet types the results are quite significant

    Mechanism of Enhancement in Electromagnetic Properties of MgB2 by Nano SiC Doping

    Get PDF
    A comparative study of pure, SiC, and C doped MgB2 wires has revealed that the SiC doping allowed C substitution and MgB2 formation to take place simultaneously at low temperatures. C substitution enhances Hc2, while the defects, small grain size, and nanoinclusions induced by C incorporation and low-temperature processing are responsible for the improvement in Jc. The irreversibility field (Hirr) for the SiC doped sample reached the benchmarking value of 10 T at 20 K, exceeding that of NbTi at 4.2 K. This dual reaction model also enables us to predict desirable dopants for enhancing the performance properties of MgB2

    Simulation of changes in some soil properties as affected by water level fluctuation in an inland salt marsh

    Get PDF
    AbstractAn 87-day simulation experiment was conducted to test the effects of water level fluctuation on soil properties of an inland salt marsh. The simulated wetland was periodically flooded for 15 days with consistent water levels of 10cm above the wetland surface soil and then drained to 0cm for 9 days. Soil samples were collected from the 0 to 30cm depth with 10cm intervals at days of 0, 39 and 72 after a 15-day pre-incubation. Total nitrogen (TN), total phosphorus (TP), soil organic matter (SOM) and pH were determined during the experimental period. Results showed that TN content was much higher in surface soils than other soil layers during the whole incubation period, especially at the second inundation period (54 days), and TN greatly increased in the soil layers above 20cm with increasing incubation time. However, the SOM content in each soil layer showed a consistent tendency of “decreasing followed increasing” with increasing incubation time. Compared to other soil layers, SOM content in surface soils were generally higher during the simulation periods. TP content in upper soils (0-20cm) consistently increased over the course of incubation time, while those in deeper soils (20-30cm) decreased. Soil pH values showed similar changing tendencies to SOM content over the incubation experiment, while they generally increased with depth

    Cosmological Constraints on the Sign-Changeable Interactions

    Full text link
    Recently, Cai and Su [Phys. Rev. D {\bf 81}, 103514 (2010)] found that the sign of interaction QQ in the dark sector changed in the approximate redshift range of 0.45\,\lsim\, z\,\lsim\, 0.9, by using a model-independent method to deal with the observational data. In fact, this result raises a remarkable problem, since most of the familiar interactions cannot change their signs in the whole cosmic history. Motivated by the work of Cai and Su, we have proposed a new type of interaction in a previous work [H. Wei, Nucl. Phys. B {\bf 845}, 381 (2011)]. The key ingredient is the deceleration parameter qq in the interaction QQ, and hence the interaction QQ can change its sign when our universe changes from deceleration (q>0q>0) to acceleration (q<0q<0). In the present work, we consider the cosmological constraints on this new type of sign-changeable interactions, by using the latest observational data. We find that the cosmological constraints on the model parameters are fairly tight. In particular, the key parameter β\beta can be constrained to a narrow range.Comment: 15 pages, 1 table, 8 figures, revtex4; v2: published versio

    A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body

    Full text link
    The issue of the inviscid limit for the incompressible Navier-Stokes equations when a no-slip condition is prescribed on the boundary is a famous open problem. A result by Tosio Kato says that convergence to the Euler equations holds true in the energy space if and only if the energy dissipation rate of the viscous flow in a boundary layer of width proportional to the viscosity vanishes. Of course, if one considers the motion of a solid body in an incompressible fluid, with a no-slip condition at the interface, the issue of the inviscid limit is as least as difficult. However it is not clear if the additional difficulties linked to the body's dynamic make this issue more difficult or not. In this paper we consider the motion of a rigid body in an incompressible fluid occupying the complementary set in the space and we prove that a Kato type condition implies the convergence of the fluid velocity and of the body velocity as well, what seems to indicate that an answer in the case of a fixed boundary could also bring an answer to the case where there is a moving body in the fluid

    Coherent transport in a two-electron quantum dot molecule

    Get PDF
    We investigate the dynamics of two interacting electrons confined to a pair of coupled quantum dots driven by an external AC field. By numerically integrating the two-electron Schroedinger equation in time, we find that for certain values of the strength and frequency of the AC field we can cause the electrons to be localised within the same dot, in spite of the Coulomb repulsion between them. Reducing the system to an effective two-site model of Hubbard type and applying Floquet theory leads to a detailed understanding of this effect. This demonstrates the possibility of using appropriate AC fields to manipulate entangled states in mesoscopic devices on extremely short timescales, which is an essential component of practical schemes for quantum information processing.Comment: 4 pages, 3 figures; the section dealing with the perturbative treatment of the Floquet states has been substantially expanded to make it easier to follo

    The Energy-dependent Checkerboard Patterns in Cuprate Superconductors

    Full text link
    Motivated by the recent scanning tunneling microscopy (STM) experiments [J. E. Hoffman {\it et al.}, Science {\bf 297}, 1148 (2002); K. McElroy {\it et al.}, Nature (to be published)], we investigate the real space local density of states (LDOS) induced by weak disorder in a d-wave superconductor. We first present the energy dependent LDOS images around a single weak defect at several energies, and then point out that the experimentally observed checkerboard pattern in the LDOS could be understood as a result of quasiparticle interferences by randomly distributed defects. It is also shown that the checkerboard pattern oriented along 45045^0 to the Cu-O bonds at low energies would transform to that oriented parallel to the Cu-O bonds at higher energies. This result is consistent with the experiments.Comment: 3 pages, 3 figure

    Long-Read Assembly and Annotation of the Parasitoid Wasp <i>Muscidifurax raptorellus</i>, a Biological Control Agent for Filth Flies

    Get PDF
    The parasitoid wasp Muscidifurax raptorellus (Hymenoptera: Pteromalidae) is a gregarious species that has received extensive attention for its potential in biological pest control against house fly, stable fly, and other filth flies. It has a high reproductive capacity and can be reared easily. However, genome assembly is not available for M. raptorellus or any other species in this genus. Previously, we assembled a complete circular mitochondrial genome with a length of 24,717 bp. Here, we assembled and annotated a high-quality nuclear genome of M. raptorellus, using a combination of long-read (104Ă— genome coverage) and short-read (326Ă— genome coverage) sequencing technologies. The assembled genome size is 314 Mbp in 226 contigs, with a 97.9% BUSCO completeness score and a contig N50 of 4.67 Mb, suggesting excellent continuity of this assembly. Our assembly builds the foundation for comparative and evolutionary genomic analysis in the genus of Muscidifurax and possible future biocontrol applications
    • …
    corecore