23 research outputs found

    PENGARUH DUKUNGAN SOSIAL ORANG TUA DAN TEMAN SEBAYA TERHADAP KEPERCAYAAN DIRI REMAJA

    Get PDF
    Banda Ace

    Revisit Parameter-Efficient Transfer Learning: A Two-Stage Paradigm

    Full text link
    Parameter-Efficient Transfer Learning (PETL) aims at efficiently adapting large models pre-trained on massive data to downstream tasks with limited task-specific data. In view of the practicality of PETL, previous works focus on tuning a small set of parameters for each downstream task in an end-to-end manner while rarely considering the task distribution shift issue between the pre-training task and the downstream task. This paper proposes a novel two-stage paradigm, where the pre-trained model is first aligned to the target distribution. Then the task-relevant information is leveraged for effective adaptation. Specifically, the first stage narrows the task distribution shift by tuning the scale and shift in the LayerNorm layers. In the second stage, to efficiently learn the task-relevant information, we propose a Taylor expansion-based importance score to identify task-relevant channels for the downstream task and then only tune such a small portion of channels, making the adaptation to be parameter-efficient. Overall, we present a promising new direction for PETL, and the proposed paradigm achieves state-of-the-art performance on the average accuracy of 19 downstream tasks.Comment: 11 page

    SCT: A Simple Baseline for Parameter-Efficient Fine-Tuning via Salient Channels

    Full text link
    Pre-trained vision transformers have strong representation benefits to various downstream tasks. Recently, many parameter-efficient fine-tuning (PEFT) methods have been proposed, and their experiments demonstrate that tuning only 1% of extra parameters could surpass full fine-tuning in low-data resource scenarios. However, these methods overlook the task-specific information when fine-tuning diverse downstream tasks. In this paper, we propose a simple yet effective method called "Salient Channel Tuning" (SCT) to leverage the task-specific information by forwarding the model with the task images to select partial channels in a feature map that enables us to tune only 1/8 channels leading to significantly lower parameter costs. Experiments outperform full fine-tuning on 18 out of 19 tasks in the VTAB-1K benchmark by adding only 0.11M parameters of the ViT-B, which is 780×\times fewer than its full fine-tuning counterpart. Furthermore, experiments on domain generalization and few-shot learning surpass other PEFT methods with lower parameter costs, demonstrating our proposed tuning technique's strong capability and effectiveness in the low-data regime.Comment: This work has been accepted by IJCV202

    The Update Equivalence Framework for Decision-Time Planning

    Full text link
    The process of revising (or constructing) a policy immediately prior to execution -- known as decision-time planning -- is key to achieving superhuman performance in perfect-information settings like chess and Go. A recent line of work has extended decision-time planning to more general imperfect-information settings, leading to superhuman performance in poker. However, these methods requires considering subgames whose sizes grow quickly in the amount of non-public information, making them unhelpful when the amount of non-public information is large. Motivated by this issue, we introduce an alternative framework for decision-time planning that is not based on subgames but rather on the notion of update equivalence. In this framework, decision-time planning algorithms simulate updates of synchronous learning algorithms. This framework enables us to introduce a new family of principled decision-time planning algorithms that do not rely on public information, opening the door to sound and effective decision-time planning in settings with large amounts of non-public information. In experiments, members of this family produce comparable or superior results compared to state-of-the-art approaches in Hanabi and improve performance in 3x3 Abrupt Dark Hex and Phantom Tic-Tac-Toe

    Constructing Heterostructure through Bidentate Coordination toward Operationally Stable Inverted Perovskite Solar Cells

    Get PDF
    It has been reported that one of the influencing factors leading to stability issues in iodine-containing perovskite solar cells is the iodine loss from the perovskite layer. Herein, bidentate coordination is used with undercoordinated I− of the perovskite surface to construct the stable perovskite-based heterostructure. This strong halogen bonding effectively inhibits interfacial migration of I− into functional layers such as C60 and Ag. Moreover, passivation of the undercoordinated I− suppresses the release of I2 and further delays the formation of voids at the perovskite surface. The resulting inverted perovskite solar cell exhibits a power conversion efficiency of 22.59% and the unencapsulated device maintains 96.15% of its initial value after continuous operation for 500 h under illumination.journal articl
    corecore