27 research outputs found

    SPIE OPTO, 2018

    Get PDF
    Indium-doped ZnO bulk crystals grown by the hydrothermal method are highly-conductive, with resistivity at 0.01 Ωcm at room temperature as revealed by Hall-effect measurement. In this paper we report on structural and optical properties of these crystals. The grown In:ZnO crystals have been studied by high resolution X-ray diffraction, micro-Raman scattering and low-temperature photoluminescence and cathodoluminescence. It was found that the c lattice parameter of the grown In:ZnO crystal expanded 0.06% with respect to the lithium-doped ZnO crystal seed, and the In-doped ZnO overgrew the seed crystal pseudomorphically but with high quality crystallinity; the X-ray rocking curves show the FWHM of the Zn face and O faces are only 0.05o and 0.1o; and the indium concentration in the crystal reaches the solubility limit. Raman spectra show strain relaxation gradually from the regrowth interface as well as a weak spectral feature at 723 cm-1. The peak at 312 cm-1 noticed in hydrothermally grown In:ZnO nanostructures does not appear in our In-doped crystals, indicating that this peak may be associated with specific defects (e.g. surface related) of the nanostructures. Photoluminescence measurements show that an indium donor bound exciton peak I9 (In0X) is the dominant peak in the PL spectrum, located at 3.3586 eV on the zinc face and 3.3577 eV on the oxygen face. Both of them deviated from the consensus literature value of 3.3567 eV, probably due to strain in the crystal induced by impuritie

    Radiation-induced Electron and Hole Traps in Ge\u3csub\u3e1-x\u3c/sub\u3eSn\u3csub\u3ex\u3c/sub\u3e (x = 0-0.094)

    Get PDF
    The band structure of germanium changes significantly when alloyed with a few percent concentrations of tin, and while much work has been done to characterize and exploit these changes, the corresponding deep-level defect characteristics are largely unknown. In this paper, we investigate the dominant deep-level defects created by 2 MeV proton irradiation in Ge1 -xSnx (x = 0.0, 0.020, 0.053, 0.069, and 0.094) diodes and determine how the ionization energies of these defects change with tin concentrations. Deep-level transient spectroscopy measurements approximate the ionization energies associated with electron transitions to/from the valence band (hole traps) and conduction band (electron traps) in the intrinsic regions of p-i-n diode test structures. The prominent deep-level hole traps may be associated with divacancies, vacancy-tin complexes, and vacancy-phosphorous complexes (V2, V-Sn, and V-P, respectively), with the presumed V-P hole trap dominating after room temperature annealing. The ionization energy level of this trap (approximated by the apparent activation energy for hole emission) is close to the intrinsic Fermi level in the 0% and 2% Sn devices and decreases as the tin concentration is increased, maintaining an approximately fixed energy spacing below the indirect conduction band edge. The other hole traps follow this same trend, and the dominant electron trap ionization energies remain roughly constant with changes in tin concentrations, indicating they are likewise pinned to the conduction band edge. These results suggest a pattern that may, in many cases, apply more generally to deep-level defects in these alloys, including those present in the as-grown materials

    Direct Bandgap Cross-over Point of Ge\u3csub\u3e1-y\u3c/sub\u3eSn\u3csub\u3ey\u3c/sub\u3e Grown on Si Estimated through Temperature-dependent Photoluminescence Studies

    Get PDF
    Epitaxial Ge1-ySny (y = 0%–7.5%) alloys grown on either Si or Ge-buffered Si substrates by chemical vapor deposition were studied as a function of Sn content using temperature-dependent photoluminescence (PL). PL emission peaks from both the direct bandgap (Γ-valley) and the indirect bandgap (L-valley) to the valence band (denoted by ED and EID, respectively) were clearly observed at 125 and 175 K for most Ge1-ySny samples studied. At 300 K, however, all of the samples exhibited dominant ED emission with either very weak or no measureable EID emission. At 10 K, ED is dominant only for Ge1-ySny with y \u3e 0.052. From the PL spectra taken at 125 and 175 K, the unstrained indirect and direct bandgap energies were calculated and are plotted as a function of Sn concentration, the results of which show that the indirect-to-direct bandgap transition occurs at ∼6.7% Sn. It is believed that the true indirect-to-direct bandgap cross-over of unstrained Ge1-ySny might also take place at about the same Sn content at room temperature. This observation suggests that these Ge1-ySny alloys could become very promising direct bandgap semiconductor materials, which will be very useful for the development of various new novel Si- and Ge-based infrared optoelectronic devices that can be fully integrated with current technology on a single Si chip

    Cathodoluminescence study of ZnO wafers cut from hydrothermal crystals

    Get PDF
    ZnO is a wide bandgap semiconductor with very promising expectation for UV optoelectronics. The existence of large crystals should allow homoepitaxial growth of ZnO films for advanced optoelectronic devices. However, the ZnO substrates are not yet mature. Both defect induced by growth and by polishing together with the high reactivity of the surface are problems to their industrial application. Cathodoluminescence (CL) was used to probe the quality of substrates from two different suppliers. The surface damage was studied by varying the penetration depth of the electron beam, allowing to observe significant differences between the two samples within a 0.5-mm-thick surface layer. CL spectra show a complex band (P1) at _3.3 eV composed of two overlapped bands (3.31 and 3.29 eV) related to point defects (PD) and the 1-LO phonon replica of the free exciton (FX-1LO). This band (P1) is shown to be very sensitive to the presence of defects and the surface and thermal treatments. Its intensity compared with the excitonic band intensity is demonstrated to provide criteria about the quality of the substrates

    Study of Trapping Phenomena in SrTiO\u3csub\u3e3\u3c/sub\u3e by Thermally Stimulated Techniques

    No full text
    Thermally stimulated current (TSC), thermally stimulated depolarization current (TSDC), and thermally stimulated luminescence (TSL) spectroscopies were combined to study trapping phenomena in undoped bulk SrTiO3 crystals. Electrical measurements were also performed and showed that the crystals are highly resistive in the dark but exhibited an unusually high photocurrent upon 400-nm illumination. Several traps were revealed in both TSC and TSDC spectra between 83 K and 450 K in such a broad temperature range and their activation energies were extrapolated from the trap positions (peaks). TSL spectra demonstrate similar characteristics comparable to TSC and TSDC spectra, though there are some differences because of different excitation and recombination mechanisms. This work reveals the presence of large number of traps in SrTiO3 single crystals, which are most likely the source of many of the interesting phenomena in SrTiO3 such as transient and persistent photoconductivity

    Study of Trapping Phenomena in SrTiO\u3csub\u3e3\u3c/sub\u3e by Thermally Stimulated Techniques

    No full text
    Thermally stimulated current (TSC), thermally stimulated depolarization current (TSDC), and thermally stimulated luminescence (TSL) spectroscopies were combined to study trapping phenomena in undoped bulk SrTiO3 crystals. Electrical measurements were also performed and showed that the crystals are highly resistive in the dark but exhibited an unusually high photocurrent upon 400-nm illumination. Several traps were revealed in both TSC and TSDC spectra between 83 K and 450 K in such a broad temperature range and their activation energies were extrapolated from the trap positions (peaks). TSL spectra demonstrate similar characteristics comparable to TSC and TSDC spectra, though there are some differences because of different excitation and recombination mechanisms. This work reveals the presence of large number of traps in SrTiO3 single crystals, which are most likely the source of many of the interesting phenomena in SrTiO3 such as transient and persistent photoconductivity

    Hydrothermal Growth and Characterization of Bulk Ga-Doped and Ga/N-Codoped ZnO Crystals

    No full text
    Bulk ZnO crystals were grown by the hydrothermal technique with Ga2O3 or GaN added to the solution in an attempt to dope with Ga, or co-dope with Ga and N, respectively. Adding Ga2O3 alone to the growth solution significantly reduces the ZnO growth rate; however, the resulting crystal is highly conductive, with a resistivity approaching 0.01 Ω cm. In contrast, the addition of GaN had less effect on the growth of ZnO, but the crystal was of poor quality with a higher resistivity, about 0.1 Ω cm. Photoluminescence spectra at 4 K show Ga0-bound-exciton peak energies of 3.3604 and 3.3609 eV for the Ga- and Ga/N-doped crystals, respectively; these energies differ slightly from the literature value of 3.3598 eV, evidently due to compressive strain. Other peaks at 3.307, 3.290, 3.236, and 3.20 eV were found in the Ga/N-codoped ZnO after the crystal was annealed at 600°C in air. The 3.307 eV peak is the so-called A line, and likely arises from recombination of a free electron with a neutral N-related acceptor
    corecore