2,592 research outputs found

    In-Plane Magnetic Anisotropy In RF Sputtered Fe-N Thin Films

    Full text link
    We have fabricated Fe(N) thin films with varied N2 partial pressure and studied the microstructure, morphology, magnetic properties and resistivity by using X-ray diffraction, atomic force microscopy, transmission electron microscopy, vibrating-sample magnetometer and angle-resolved M-H hysteresis Loop tracer and standard four-point probe method. In the presence of low N2 partial pressure, Fe(N) films showed a basic bcc a-Fe structure with a preferred (110) texture. A variation of in-plane magnetic anisotropy of the Fe(N) films was observed with the changing of N component. The evolution of in-plane anisotropy in the films was attributed to the directional order mechanism. Nitrogen atoms play an important role in refining the a-Fe grains and inducing uniaxial anisotropy.Comment: 11 pages, 6 figure

    The effects of local voids and imperfections of surrounding rock on the performance of existing tunnel lining

    Get PDF
    Local voids and imperfections may exist around the tunnel due to reasons such as inadequate back infill behind the lining, insufficient local lining thickness, ground water erosion, and other imperfect construction related activities. Such local voids and imperfections generally will lead to local contact loss and discontinuity in the ground-lining interaction. This paper evaluates the effect of local voids and imperfections developing around the tunnel vault area on the mechanical performance of tunnel lining. Based on field investigation results, a series of voids and imperfections with different geometries are defined to reflect cases resulting from different causes. Numerical parametric analyses were performed to investigate how those voids and imperfections influence the internal force and the safety factor of the lining, and the reinforced concrete lining were modelled with the smeared crack model to examine the development of cracking directions and patterns. Furthermore, the numerical approach was verified by comparing with field investigations and measurements. This study aims to investigate the most unsafe situation due to local voids and imperfections around the tunnel, and the modelled cracking feature shows a way to preliminary evaluate the possible local voids and imperfections behind tunnel lining based on field observation

    Comparison of Vlasov-Uehling-Uhlenbeck model with 4 π Heavy Ion Data

    Get PDF
    Streamer chamber data for collisions of Ar + KCl and Ar + BaI2 at 1.2 GeV/nucleon are compared with microscopic model predictions based on the Vlasov-Uehling-Uhlenbeck equation, for various density-dependent nuclear equations of state. Multiplicity distributions and inclusive rapidity and transverse momentum spectra are in good agreement. Rapidity spectra show evidence of being useful in determining whether the model uses the correct cross sections for binary collisions in the nuclear medium, and whether momentum-dependent interactions are correctly incorporated. Sideward flow results do not favor the same nuclear stiffness parameter at all multiplicities

    A new approach for implementing the HLL approximate riemann solver for one-dimensional dam-break flows

    Get PDF
    Proceedings of the Seventh International Conference on Hydroscience and Engineering, Philadelphia, PA, September 2006. http://hdl.handle.net/1860/732Several new techniques are proposed to overcome the deficiencies in the conventional formulation of the approximate Riemann solvers for one-dimensional dam-break flows, which include numerical imbalance and failure to satisfy mass conservation. The former arises in the case of irregular geometry and the latter in the presence of a hydraulic jump. These new techniques include: (1) adopting the form of the Saint Venant equations which include only one source term representing driving forces; (2) using water surface level as one of the primitive variables, in stead of crosssectional area; (3) defining discharge at interface and evaluating it according to the flux obtained by the HLL Riemann solver (Harten et al 1983). The performance of the resulting schemes is evaluated by means of theoretical analysis and various test examples, including ideal dam-break flows with dry bed, hydraulic jump, steady flow over bump with hydraulic jump, and a real-life dam-break flow in natural river valley with complex geometry. It is demonstrated that the scheme has excellent numerical balance and mass conservation property and is capable of satisfactorily reproducing various complicated open channel flows

    Prognostic significance of nm23-H1 expression in oral squamous cell carcinoma

    Get PDF
    Recent studies indicated nm23-H1 played a role in cancer progression. Therefore, we investigated clinical significance of nm23-H1 expression in oral squamous cell carcinoma (OSCC). In total, 86 OSCC specimens were immunohistochemically stained with nm23-H1-specific monoclonal antibodies. Immunohistochemical staining of nm23-H1 was confirmed by immunoblotting. The relations between nm23-H1 expression and clinicopathologic variables were evaluated by chi(2) analysis. As increased size of primary tumour could escalate metastatic potential and the data of patients at the late T stage might confound statistical analyses, we thus paid special attention to 54 patients at the early T stage of OSCC. Statistical difference of survival was compared by a log-rank test. Immunohistochemically, nm23-H1 expression was detected in 48.8% (42 out of 86) of tumorous specimens. It positively correlated with larger primary tumour size (P = 0.03) and inversely with cigarette-smoking habit (P = 0.042). In patients at the early T stage, decreased nm23 expression was associated with increased incidence of lymph node metastasis (P = 0.004) and indicated poor survival (P = 0.014). Tumour nm23-H1 expression is a prognostic factor for predicting better survival in OSCC patients at the early T stage, which may reflect antimetastatic potential of nm23. Therefore, modulation of nm23-H1 expression in cancer cells can provide a novel possibility of improving therapeutic strategy at this stage. In addition, our results further indicated cigarette smoking could aggravate the extent of nm23-H1 expression and possibly disease progression of OSCC patients. (C) 2004 Cancer Research UK

    Ground instability detection using PS-InSAR in Lanzhou, China

    Get PDF
    This paper reports on the application of radar satellite data and Persistent Scatterer Interferometry (PS-InSAR) techniques for the detection of ground deformation in the semi-arid loess region of Lanzhou, northwestern China. Compared with Synthetic Aperture Radar Interferometry (InSAR), PS-InSAR overcomes the problems of temporal and geometric de-correlation and atmospheric heterogeneities by identifying persistent radar targets (PS) in a series of interferograms. The SPINUA algorithm was used to process 40 ENVISAT ASAR images for the study period 2003–2010. The analysis resulted in the identification of over 140000 PS in the greater Lanzhou area covering some 300 km2. The spatial distribution of moving radar targets was checked during a field campaign and highlights the range of ground instability problems that the Lanzhou area faces as urban expansion continues to accelerate. The PS-InSAR application detected ground deformations with rates up to 10 mm a−1; it resulted in the detection of previously unknown unstable slopes and two areas of subsidence. Lanzhou is the capital of Gansu Province and is one of the most important industrial cities in NW China (Fig. 1). The 12th Five-Year Plan and the 2011 National Economic and Social Development Statistical Bulletin of Lanzhou City indicate that the gross domestic product (GDP) of Lanzhou more than doubled in the last decade, reaching some 136 billion Yuan (c. £13.6 billion). This is associated with a rapid increase in the urban population and current forecasts suggest that the remaining undeveloped land can sustain further development for only some 10–15 years (Yao 2008). Increasingly, people have to encroach on marginal areas having a greater potential for ground instability. Since 1949, a variety of geohazards (mainly comprising landslides, debris flows, soil collapse, subsidence and floods) in Lanzhou have caused some 676 deaths and an estimated cumulative direct economic loss of some 756 million Yuan (Ding & Li 2009; Dijkstra et al. 2014). It is expected that further casualties and economic impacts will result in this unstable landscape unless a better understanding of the spatial distribution and causes of typical geohazards involving ground instability can be implemented in the development of land-use management practices, urban planning and the design of mitigation strategies. Satellite-based radar interferometry provides an opportunity to map ground deformation over large areas of interest. This paper highlights the use of PS-InSAR (Permanent Scatterer Synthetic Aperture Radar Interferometry) in a region where an incomplete ground instability inventory exist
    corecore