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A NEW APPROACH FOR IMPLEMENTING THE HLL APPROXIMATE RIEMANN 
SOLVER FOR ONE-DIMENSIONAL DAM-BREAK FLOWS 

 
 

Xinya Ying1 and Sam S. Y. Wang2 
 
 
ABSTRACT 
 
Several new techniques are proposed to overcome the deficiencies in the conventional formulation 
of the approximate Riemann solvers for one-dimensional dam-break flows, which include numerical 
imbalance and failure to satisfy mass conservation. The former arises in the case of irregular 
geometry and the latter in the presence of a hydraulic jump. These new techniques include: (1) 
adopting the form of the Saint Venant equations which include only one source term representing 
driving forces; (2) using water surface level as one of the primitive variables, in stead of cross-
sectional area; (3) defining discharge at interface and evaluating it according to the flux obtained by 
the HLL Riemann solver (Harten et al 1983). The performance of the resulting schemes is evaluated 
by means of theoretical analysis and various test examples, including ideal dam-break flows with 
dry bed, hydraulic jump, steady flow over bump with hydraulic jump, and a real-life dam-break flow 
in natural river valley with complex geometry. It is demonstrated that the scheme has excellent 
numerical balance and mass conservation property and is capable of satisfactorily reproducing 
various complicated open channel flows. 
 
 
1.  INTRODUCTION 
 
Modeling open channel flows with discontinuities, mixed flow regimes, and irregular geometry has 
been a great challenge to hydraulic researchers and engineers. Recently, the applications of TVD 
schemes and approximate Riemann solvers to one-dimensional open channel flows were frequently 
reported (e.g., Garcia-Navarro and Vazquez-Cendon, 2000; Sanders, 2001; Delis, 2002). These 
schemes were originally developed to deal with gas dynamics problems. They are accurate in some 
situations, but the problems such as numerical imbalance and failure to satisfy mass conservation 
arise when the channel has complex geometry and the flow includes a hydraulic jump. In 
conventional formulation, the momentum equation includes three terms that respectively represent 
the hydrostatic pressure force, the pressure force due to cross-sectional variations, and the gravity 
effect due to bed slope. The numerical imbalance is created when these terms are calculated using 
different methods, which leads a numerical flow even in a still water test case. On the other hand, 
Delis (2002) evaluated Roe’s Riemann solver and several TVD schemes by means of several test 
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cases with a hydraulic jump and revealed that the solutions can not satisfy mass conservation at the 
several cells near the hydraulic jump.   

This paper presents a new approach for implementing the HLL approximate Riemann solvers 
for one-dimensional dam-break flows, which is able to overcome the deficiencies in the 
conventional formulation, such as numerical imbalance and failure to satisfy mass conservation. The 
performance of the resulting schemes is evaluated using several test examples with analytic 
solutions or measured data and is compared with a conventional scheme. 

   
 
 
   
 
 
 
 
 
 
 
 
 
 
   

Figure 1   Definition sketch of cross-sectional geometry 
 
 

2. GOVERNING EQUATIONS 
 
One-dimensional unsteady flows in a natural channel with irregular cross-sections are often 
described by the Saint Venant equations, that is 
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D , B = channel width at water surface elevation (see Figure 1);  U, F(U), and S(U) 

are respectively the vectors of primitive variables, fluxes, and sources, defined as follows. 
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In above equations, Z = water surface level; Q = discharge; A = cross-sectional area; g = 
gravitational acceleration; n = Manning’s coefficient; and R = hydraulic radius (=A/P); P = wetted 
perimeter of the channel.  

The above form of the Saint Venant equations is commonly used in engineering practice (e.g., 
Chow, 1959; Cunge et al., 1980; Graf and Altinakar, 1998; Ying et al., 2004). Note that the term 

t
ZB
∂
∂  in the continuity equation is equals to 
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by only one term with the water surface gradient, which makes it very nice for treating the source 
term because: (1) the variation of water surface is generally much smoother than water depth and 
bottom; (2) it eliminates the problems such as numerical imbalance that arises due to using different 
methods to discretize source terms. As a matter of fact, Nujic (1995) proposed a balancing technique 
in which the pressure term due to water depth is extracted from the flux and combined into the 
bottom slope term, which actually resulted in a similar form of the governing equation as Eq. (1). In 
addition, it should be pointed out that the adoption of Eq. (1) as the governing equation 
automatically incorporates the SGM (Surface Gradient Method) balancing technique (Zhou et al., 
2001) into the model formulation.      

 

3. NUMERICAL SCHEME  
                                            
The finite volume method is employed for solving the governing equations. Fig. 2 shows the 
computational grid, which has N cells, N-1 interfaces between cells and two boundary interfaces.  

Integrating Eq. (1) over the ith cell with length of ix∆  yields  
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where iD  represents the mean values of D over the entire ith cell. 

Applying Green’s theorem to Eq. (2) and using explicit scheme for time advancing, the 
following discretized equation is obtained. 
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where Ui is the vector of primitive variables at ith cell center, representing the average values over 
the entire cell; Fi+1/2  and Fi-1/2  are the fluxes at (i+1/2)th and (i-1/2)th interfaces, see Fig. 2.  

According to Godunov (1959), the variables are approximated as constant states within each 
cell and then the fluxes at interfaces are calculated by solving resultant Riemann problems that exit 
at interfaces. Here the HLL approximate Riemann solver, proposed by Harten, Lax and van Leer 
(1983), is used to calculate the intercell flux, because of its robustness and ease to implement. The 
HLL scheme assumes only one constant intermediate state between the left wave and the right wave, 
as shown in Fig.3. The intercell flux is defined as  
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Figure 2  Definition sketch of computational grid 
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Figure 3  Three possible wave configurations 
 
where SL and SR are left and right wave speeds, respectively, see Fig.3. That is, the flux at an 
interface is determined by the left state if SL ≥ 0 (Fig. 3-a), and by the right state if SR ≤ 0 (Fig. 3-c). 
When SL < 0 and SR >0 (Fig. 3-b), the flux F* is determined by the conservation laws and the 
assumption that channel is locally prismatic in each cell. Let *

1f  and *
2f  are two components of the 

flux F*, that is, [ ]Tff *
2

*
1

* ,=F . Applying the mass conservation law on the control volume OABC 
and OCDE (see Fig. 3-b), we can obtain 
 

LLRR

LRRRLL
R

LL
L

RR

BSBS
ZZBSBSfBSfBSf

−
−+−

=
)(11*

1                                    (5) 

 
Applying the momentum conservation law on the control volume OABC and OCDE, 

respectively, we can obtain 
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The wave speeds SL and SR are estimated according to the following equations. 

 
( )** ,min hgVhgVS LLL −−=                                                  (7) 

( )** ,max hgVhgVS RRR ++=                                                 (8) 
 
where VL and VR are velocities of the left and right states, respectively; Lh  and Rh  are averaged 
water depth of the left and right states, which is defined according to BAh /= .  
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Note that for a dry bed problem the wave speeds SL and SR are estimated according to the 

following expressions. 
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LLL hgVS −=  ,    LLR hgVS 2+=             for right dry bed           (11)  

RRL hgVS 2−= ,    RRR hgVS +=             for left dry bed              (12)  
 

The HLL approximate Riemann solver discussed above is a first-order scheme. The second-
order spatial accuracy can be obtained through a piecewise linear reconstruction of primitive 
variables in each cell, which leads to 
  

i

i
i

L

i x
x

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂∆

+=
+

UUU
22

1                                                             (13) 

1

1
1

2
1 2 +

+
+

+
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂∆

−=
i

i
i

R

i x
x UUU                                                        (14) 

 
In order to avoid numerical oscillations, proper slope limiters must be used in estimating the 
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x∂
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The minmod function is defined as the argument with smaller value if all arguments have the 

same sign and otherwise it is zero. 
The source terms in Eq. (3) include the water surface gradient term and the friction term. The 

water surface gradient is computed by centered difference approach. The friction term is explicitly 
evaluated based on the pointwise method. Therefore, the values of Z and Q at next time can be 
obtained by solving Eq. (3) explicitly. Such a method is often referred to as the cell centered scheme 
as both variables Z and Q are defined at cell centers. For convenience, hereafter this scheme is 
referred as the HLL-A scheme. However, the solution of the discharge from such a numerical 
scheme may not satisfy mass conservation law in the event that there is a hydraulic jump, as shown 
in the numerical tests that follow.  

To find a solution to this problem, let us first look at the discretized equation (3). For clarity, 
the continuity equation in Eq.(3) is rewritten as 
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It is important to note that in the discretized continuity equation, the variable Q is replaced by 

the flux 1f . Therefore, it is obvious that the continuity equation only ensure the conservation 
property of the flux 1f , instead of discharge Q. Let us take a steady flow as an example. When the 
solution converges at steady state, i.e. n

i
n
i ZZ =+1 , from the continuity equation (16), we can see that 

the flux 1f  has the same value at all interfaces, which is equal to the inflow discharge or the flux 1f  
at inflow boundary. In other words, the flux 1f  has the exact conservation property, while the 
discharge Q calculated by the momentum equation is not ensured to have such property. For this 
reason, we choose the values of flux 1f  as the solution of discharge, while the values of Qi 
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calculated by Eq. (3) are only used to define the constant states of the Riemann problems. The 
resulting scheme is called the HLL-B scheme.    

The solution procedures for the proposed schemes are summarized below: 
(1)  Performing piecewise linear reconstruction of primitive variables in each cell according to Eqs.  
      (13), (14), and (15). Note that this step is required only for the second-order scheme; 
(2)  Calculating wave speeds according to Eqs. (7) and (8) or Eqs. (11) and (12); 
(3)  Evaluating fluxes by Eqs. (4), (5) and (6). For the HLL-B scheme, discharge Q is evaluated  
      based on Q = *

1f ; 
(4) Obtaining the values of Z and Q at cell centers at next time from Eq. (3). For the HLL-A scheme, 
these values are considered as the solutions of Z and Q. For the HLL-B scheme, only the values of Z 
are used as the solution, while the values of Q are provisional and only used to define the Riemann 
problems at next time.   

It should be noted that the solution procedures for both HLL-A and HLL-B schemes are 
essentially identical. The only difference between two schemes is the approaches used to evaluate 
discharges. In the HLL-A scheme, discharges are estimated in conventional way, that is, according 
to the momentum equation, while in the HLL-B scheme discharges are assumed to be equal to the 
values of flux 1f . For this reason, the both schemes give the same results of water level Z.   
     It is easy to see that the resulting schemes do not cause numerically generated flow or 
numerical imbalance problem. Let us consider an open channel filled with water at rest. Obviously, 
the water will remain at rest if no disturbance is applied to the domain and boundaries. If we apply 
above schemes to simulate this case, we can see the source terms, including water surface gradient 
term and friction term, and flux terms in Eq. (3) are exactly equal to zero at initial time, no matter 
how bottom and cross-section change. As a result, the solutions of Z and Q at succeeding time will 
remain the same as initial state, in other words, no flow is numerically generated.    
     Like most explicit schemes, the schemes discussed above are subject to the Courant-
Friedrichs-Lewy stability condition, that is 
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4.  BOUNDARY CONDITIONS AND DRY BED TREATMENT 
 
For control volume method, boundary conditions are often treated by introducing ghost cells. In 
these ghost cells, primitive variables and their gradients are specified. In the event that inflow is 
subcritical, discharge is often specified at the ghost cell and water level is evaluated by extrapolation 
based on the values of two adjacent interior cells. For supercritical inflow, both discharge and water 
level are specified at the ghost cell and gradient of water level is set to zero. At open outflow 
boundary, both discharge and water level at the ghost cell are calculated by linear extrapolation 
based on the values of two adjacent interior cells. For the outflow boundary with specified water 
level, the water level at the ghost cell is set to the specified value. This approach to treat boundary 
conditions is common and often sufficient for control volume method (Sanders, 2001).  

Channel flows may occur over initially dry areas. The commonly used approach to deal with 
this problem is to define a sufficiently small water depth and zero velocity at dry nodes, so that the 
dry domain can be computed in the same way as wet part without introducing significant error.  
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5.  NUMERICAL TESTS 
 
5.1   Idealized dam-break problem in a rectangular channel with dry bed   
 
Consider a 1200 m long channel with rectangular cross-section, which is assumed to be horizontal 
and frictionless. A dam is located at 500 m from upstream end of the channel. Initially, upstream 
water depth is 10 m and downstream channel is dry. This is an ideal dam-break example and has 
been widely used for testing numerical schemes (e.g., Zoppou and Roberts, 2003; Ying et al., 2004). 
In the computation, x∆  = 10 m, t∆  = 0.1 s, and initial water depth in the downstream channel was 
specified as 10-40 m.  

The numerical and exact solutions of water depth h, discharge Q, and velocity V at 30 s after 
the dam failure are presented in Figs.4 (a), (b) and (c), respectively. The exact solutions can be 
found in the books by Toro (2001) and Graf and Altinakar (1998). Note that the HLL-A scheme 
results in the same results as the HLL-B scheme for this example in terms of water depth h, 
discharge Q, and velocity V. Therefore, in Fig.4 only results from the HLL-B schemes are presented. 
Fig.4 shows that both the first-order and the second-order schemes result in overall reasonable 
solutions, which have no entropy violation. As expected, the first-order scheme is more diffusive 
that the second-order scheme.  

Fig. 4(c) reveals that the solutions of velocity are evidently under-predicted near the wave 
front edge. In fact, most of numerical schemes have difficulties to accurately predict velocity near 
the wave front edge for dry bed dam-break problem, because of very small water depth in the area. 
For example, Sanders (2001) reported that the Roe-type Riemann solver with MUSCL approach 
predicted velocity with significant under-prediction or over-prediction near the front edge, which is 
strongly dependent on the selection of CFLN . It should be noted that this insufficiency only results in 
very limited influence on the flow, which can be observed from the numerical solutions of water 
depth and discharge, as shown in Figs. 4(a) and (b) respectively. Further tests demonstrate that the 
solutions by the present schemes are almost independent of CFLN , that is, no significant difference in 
solutions is observed by using different time step as long as CFLN  is kept less than one. 
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Fig. 4   Numerical solutions of dam-break problem in a rectangular channel with dry bed at t = 30 s 

 
5.2  Hydraulic jump in a rectangular channel 
     
This test case is selected to demonstrate that the proposed scheme can satisfactorily reproduce not 
only the location and height of a hydraulic jump, but also the discharges along the channel. The 
computed results are verified against the experimental data measured in a 14.0 m long and 0.46 m 
wide metal flume with horizontal bottom (Gharangik and Chaudhry, 1991). In the experiment, the 
water depth at the upstream boundary is 0.031 m, velocity is 3.831 m/s, and corresponding Froude 
number is 7.0. Water depth at downstream end is 0.265 m. In the computation the channel was 
discretized by 47 cells. The time step was 0.05 s. Initial water depth and velocity over the entire 
channel was assumed to be the same as those at the upstream boundary. The water depth at the 
downstream boundary was increased from 0.031 m to 0.265 m in 50 seconds and maintained until a 
steady hydraulic jump was formed. Value of the Manning’s coefficient n = 0.0085 s/m1/3 was used, 
which was determined by matching experimental data with simulation results and is within the range 
of 0.008 to 0.011, as suggested by the experiment.  

Fig. 5(a) shows that the location of the hydraulic jump is predicted by both the first-order and 
the second-order schemes with satisfactory accuracy. The numerical solutions of discharge along 
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channel from the HLL-A scheme and the HLL-B scheme are presented in Fig. 5(b). Since it is 
steady flow, the discharge should keep constant along the entire channel length. From this figure, it 
is observed that the solutions from the HLL-A schemes do not converge at the exact solution over 2 
or 3 cells near the hydraulic jump. In other words, the solutions of discharge do not satisfy the mass 
conservation law. Such non-conservative solution of the discharge at the location of hydraulic jump 
is also reported by several researchers in their steady flow over bump test case (e.g., Vazquez-
Cendon, 1999; Hubbard and Garcia-Navarro, 2000; Zhou et al., 2001; Rogers et al., 2003). In 
contrast, the exact conservation property of the HLL-B schemes is observed. The difference between 
numerical solutions from the HLL-B schemes and the exact value of discharge (=0.0546 m3/s) along 
the entire channel length is indistinguishable in the figure.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5  Numerical solutions for the hydraulic jump test case in a rectangular channel 

 

5.3  Steady flow over a bump  
 
Consider a 1 m wide and 25 m long channel with rectangular cross-section. The channel bed is 
assumed to be horizontal and frictionless. Bottom elevation Zb is defined by 
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The downstream boundary condition of Z = 0.33 m and the inflow condition of Q = 0.18 m3/s 

were imposed in the computation. This test case was widely used to study the convergence of 
numerical solution to a steady state and the conservation of discharge along distance (e.g., Vazquez-
Cendon, 1999;  Zhou et al., 2001; Valiani, 2002)  

The analytic solution for this test case was obtained by the Bernoulli equation and the location 
of hydraulic jump was determined by the conservation of momentum across the jump. In the 
computation the grid size was the same as used in the numerical simulation by Valiani et al. (2002), 
that is, x∆  =0.1m, so that the computed results from the present scheme can be compared with the 
existing results from other numerical schemes. The time step t∆  = 0.01 was used.   

Fig. 6(a) shows that the numerical solution of water level is in good agreement with the 
analytic solution. Particularly, the location of the hydraulic jump is accurately predicted. Fig. 6(b) 
indicates that the solution from the HLL-B scheme has excellent conservation property and the 
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difference between predicted and exact discharge is indistinguishable. In contrast to this, the 
discharge from the HLL-A schemes does not satisfy the mass conservation law over several cells 
adjacent to the hydraulic jump, which are similar to those from the HLL approximate Riemann 
solver with the surface gradient method (Zhou et al., 2001) and the corrected upwind method (Delis, 
2003) for the treatment of the source terms.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  Numerical solutions for the test case of steady flow over a bump with hydraulic jump 
 
          
5.4  Propagation of flood wave in the Toce River Valley   
 
This test example, which was used as a benchmark test case in the CADAM project (Soares Frazao 
et al., 2000), is selected to demonstrate the numerical model’s capability to deal with a real-life 
problem with irregular cross-sections and non-uniform grid. The topography of Toce River is shown 
in Fig. 7. The computational domain was divided into 61 cells, which was quite non-uniform and the 
length of cells varied from 0.25 to 1.94 m, as shown in Fig. 8. Fig. 9 shows the discharge-time 
hydrograph of inflow. A free outflow boundary condition was imposed in the computation. The 
value of the Manning’s coefficient was 0.02 s/m1/3, as used in most of previous 1D simulations of 
the Toce River Test Case (e.g., Soares Frazao and Zech, 1999; Rosu and Ahmed, 1999). The entire 
domain was assumed to be dry at initial time. In the computation, the initial water depth in the 
domain was set to 0.01 m. The time step was 0.1 s and the corresponding maximum value of NCFL 
was 0.7. The total number of time steps was 1800. The computational time was 0.33 s on a PC with 
AMD Athlon processor (1.46 GHz). The topographic data and inflow discharge hydrograph used in 
the computation were the same as those in the physical model so that the numerical results can be 
directly compared with the experimental data.   

Computational results of water surface level and discharges at t = 30, 60, and 120 s are 
presented in Figs. 10 and 11, respectively. These figures give a rough idea about the flood 
propagation in the river valley. In Fig.10, the variation of water surface level due to uneven 
topography and formation of hydraulic jumps are observed. The presence of hydraulic jumps can be 
confirmed from Fig. 12, which displays the Froude Number as a function of distance x and clearly 
reveals that there are several transitions between supercritical flow and subcritical flow. Fig. 11 
shows the comparisons of computed discharges between the HLL-A scheme and the HLL-B 
scheme. It is observed that the HLL-B scheme produces reasonable solutions, whereas the HLL-A 
scheme fails to correctly predict the discharges at the locations where hydraulic jumps take place, 
which is similar to those in the aforementioned hydraulic jump and steady flow over bump test 
cases. To further demonstrate the conservation property of the HLL-B scheme, a steady flow test 
case is performed in which a constant discharge of 0.1 m3/s is imposed at the inlet boundary and no 
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distinguishable difference between predicted discharge and the exact value over the entire domain is 
observed.  

Fig. 13 shows that the computed stage-time hydrographs at four selected observation points 
from upstream to downstream are in good agreement with the measured data. Note that the 
numerical result represents the average value over a cross-section, while experimental result 
represents the value at an observation point. This is a probable cause for the existence of 
discrepancy between predicted and measured results in certain regions. Fig. 14 shows that the 
computed results of maximum water level are in reasonable agreement with the measured data from 
the physical model, except for the observation point P9 where the predicted maximum water level is 
lower than the measured value because the local water surface rise due to the influence of reservoir 
embankment can not be correctly reproduced by a one-dimensional model.  
 

 
Fig. 7   Topography of the Toce River Valley and locations of measurement points 
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Fig. 8   Locations of computational cross-sections for the Toce River test case 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9   Discharge-time hydrograph at inflow boundary for the Toce River test case 
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Fig. 10   Computed water surface elevations at t = 30, 60, and 120 s  

for the Toce River test case 
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Fig. 11   Computed discharges at t = 30, 60, and 120 s for the Toce River test case 
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Fig.12   Froude Number Fr as a function of x at t = 120 s for the Toce River test case 
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Fig. 13   Comparisons of computed stage-time hydrographs (solid line) with measured data (dot) at 

four observation points for the Toce River test case 
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Fig. 14   Comparisons of maximum water level among numerical results and measured data for the 

Toce River test case 
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6.  CONCLUSIONS 
 
A new method has been proposed for implementing the approximate Riemann solvers for one-
dimensional open channel flows. The method solves the form of the Saint Venant equations that 
include only one source term representing driving forces and use water surface level as one of 
primitive variables, in place of cross-sectional area. In addition, in the new method the discharge is 
evaluated according to the HLL flux, in stead of calculating it traditionally by solving the 
momentum equation. From both theoretical analysis and the results of several well-selected test 
examples, it has been clearly shown that the resulting scheme (HLL-B scheme) has excellent 
numerical balance and mass conservation property. The comparisons of computed results with 
analytical solutions and experimental data further demonstrate the ability of the HLL-B scheme to 
correctly depict the one-dimensional open channel flows that may include discontinuities, 
transcritical flows, wave interactions, and flows with irregular geometry and initial dry bed. The 
scheme’s robustness and applicability to real-life open channel flows with complicated geometry are 
also well illustrated by means of test examples. It is important to note that this newly proposed 
method for implementing the approximate Riemann solvers should be also applicable to rectangular 
grid based two-dimensional shallow water flow simulations.  
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