119 research outputs found

    Investigation of effect of fullerenol on viscoelasticity properties of human hepatocellular carcinoma by AFM-Based creep tests

    Get PDF
    Cellular elasticity is frequently measured to investigate the biomechanical effects of drug treatment, diseases and aging. In light of cellular viscosity property exhibited by filament actin networks, this study investigates the viscoelasticity alterations of human hepatocellular carcinoma (SMMC-7721) cell subjected to fullerenol treatment by means of creep tests realized by AFM indentation. An SMMC-7721 cell was first modeled as a sphere and then a flattened layer with finite thickness. Both Sneddon’s solutions and Dimitriadis model have been modified to adapt for viscoelastic situation, which are used to fit the same indentation depth – time curves obtained by creep tests. We find that the SMMC-7721 cell’s creep behavior is well described by the two modified models, and the divergence of parameters determined by the two models is justified. By fullerenol treatment, the SMMC-7721 cell exhibits a significant decrease of elastic modulus and viscosity, which is presumably due to the disruption of actin filaments. This work represents a new attempt to understand the alternation of the viscoelastic properties of cancerous cells under the treatment of fullerenol, which has the significance of comprehensively elucidating the biomechanical effects of anticancer agents (such as fullerenol) on cancer cells

    Effects of laser fluence on silicon modification by four-beam laser interference

    Get PDF
    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm, 495 mJ/cm, and 637 mJ/cm, the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, and the pulse duration of 7-9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications

    New approaches in optical interferometry

    Get PDF
    This thesis presents two new approaches in optical interferometry: phase difference determination by fringe pattern matching and a spatial phase-shifting interferometry (spatial PSI) algorithm. These two approaches are both theoretically described and experimentally illustrated in this thesis. The method of phase difference determination by fringe pattern matching is capable of detecting the phase difference between two interferograms with subpixel resolution. In this method, the phase curves are obtained from mean-square difference calculations of any two fringe patterns shifted pixel by pixel, and the phase difference between the interferograms can be achieved by linear interpolation or polynomial curve fitting from the phase curves. The signal to noise ratio is significantly improved due to the region-based matching and its effect of averaging noise. The equations derived from the statistical analysis of matching process clearly explain the reason that the larger image patches have a better accuracy in the measurement of phase difference. The three applications of fringe pattern matching, measurement of electrostatic force displacement, displacement measurement based on Youngs experiment, and phase-shifting interferometry with arbitrary phase steps, are also investigated in this thesis. Computer simulation and experimental results have proved that fringe pattern matching is a powerful technique for measuring some basic parameters in optical interferometry such as phase difference, fringe spacing and displacement. In the algorithm of spatial PSI, one fringe pattern is captured by a CCD camera, and the other two shifted fringe patterns with the phase steps of 90oC and 180oc are generated by computer, according to the features of the light intensity distributions and the method of interpolation. The phase is then calculated by a standard three-step algorithm of phase-shifting interferometry. Experimental results have shown that it is a useful approach to spatial PSI

    Effect of AFM nanoindentation loading rate on the characterization of mechanical properties of vascular endothelial cell

    Get PDF
    Vascular endothelial cells form a barrier that blocks the delivery of drugs entering into brain tissue for central nervous system disease treatment. The mechanical responses of vascular endothelial cells play a key role in the progress of drugs passing through the blood–brain barrier. Although nanoindentation experiment by using AFM (Atomic Force Microscopy) has been widely used to investigate the mechanical properties of cells, the particular mechanism that determines the mechanical response of vascular endothelial cells is still poorly understood. In order to overcome this limitation, nanoindentation experiments were performed at different loading rates during the ramp stage to investigate the loading rate effect on the characterization of the mechanical properties of bEnd.3 cells (mouse brain endothelial cell line). Inverse finite element analysis was implemented to determine the mechanical properties of bEnd.3 cells. The loading rate effect appears to be more significant in short-term peak force than that in long-term force. A higher loading rate results in a larger value of elastic modulus of bEnd.3 cells, while some mechanical parameters show ambiguous regulation to the variation of indentation rate. This study provides new insights into the mechanical responses of vascular endothelial cells, which is important for a deeper understanding of the cell mechanobiological mechanism in the blood–brain barrier

    Investigation of work of adhesion of biological cell (human hepatocellular carcinoma) by AFM nanoindentation

    Get PDF
    In this study, we presented an investigation of mechanical properties by AFM nanoindentation on human hepatocellular carcinoma cells treated with fullerenol for 24, 48 and 72 hours. AFM nanoindentation was routinely applied to investigate the morphology and biomechanical properties of living carcinoma cells, and adhesion phenomena (negative force) were detected in the obtained force-displacement curves. Conventionally, Hertz contact model has been widely used for determination of cell elasticity, however this contact model cannot account for adhesion. Alternatively, JKR contact model, as expected for adhesion circumstance, has been applied to fit the obtained force-displacement curves. In this investigation, we have derived both the work of adhesion and the elastic modulus of biological cells (human hepatocellular carcinoma) under fullerenol treatment. The results show that the chosen JKR model can provide better fitting results than Hertz contact model. The results show that both Young’s modulus and work of adhesion exhibit significant variation as the treatment time increases. The calculated mechanical properties of elastic modulus and work of adhesion can be used as an effective bio-index to evaluate the effects of fullerenol or other anticancer agents on cancer cells and thus to provide insight into cancer progression in the treatment

    Axisymmetric contact problem for a flattened cell : contributions of substrate effect and cell thickness to the determination of viscoelastic properties by using AFM indentation

    Get PDF
    Nanoindentation technology has proven an effective method to investigate the viscoelastic properties of biological cells. The experimental data obtained by nanoindentation are frequently interpreted by Hertz contact model. However, in order to facilitate the application of Hertz contact model, a mass of studies assume cells have infinite thickness which does not necessarily represent the real situation. In this study, a rigorous contact model based upon linear elasticity is developed for the interpretation of indentation tests of flattened cells which represent a factual morphology. The cell, normally bonded to the petri dish, is initially treated as an elastic layer of finite thickness perfectly fixed to a rigid substrate, and the conic indenter is assumed to be frictionless. The theory of linear elasticity is utilized to solve this contact issue and then the solutions are extended to viscoelastic situation which is regarded as a good indicator for mechanical properties of biological cells. To test the present model, an AFM-based creep test has been conducted on living human hepatocellular carcinoma cell (SMMC-7721 cell) and its fullerenol-treated counterpart. The results indicate that the present model could not only describe very well the creep behavior of SMMC-7721 cells, but can also curb overestimation of the mechanical properties due to substrate effect. Moreover, the present model could identify the difference between the control and treated SMMC-7721 cells in terms of the extracted viscoelastic parameters, suggesting its potential in revealing the biomechanical effects of fullerenol-like drug treatment on cancerous cells

    Determination of beam incidence conditions based on the analysis of laser interference patterns

    Get PDF
    Beam incidence conditions in the formation of two-, three- and four-beam laser interference patterns are presented and studied in this paper. In a laser interference lithography (LIL) process, it is of importance to determine and control beam incidence conditions based on the analysis of laser interference patterns for system calibration as any slight change of incident angles or intensities of beams will introduce significant variations of periods and contrasts of interference patterns. In this work, interference patterns were captured by a He-Ne laser interference system under different incidence conditions, the pattern period measurement was achieved by cross-correlation with, and the pattern contrast was calculated by image processing. Subsequently, the incident angles and intensities of beams were determined based on the analysis of spatial distributions of interfering beams. As a consequence, the relationship between the beam incidence conditions and interference patterns is revealed. The proposed method is useful for the calibration of LIL processes and for reverse engineering applications

    Micro and nano dual-scale structures fabricated by amplitude modulation in multi-beam laser interference lithography

    Get PDF
    © 2017 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reservedIn this work, an effective method was presented to obtain a specific micro and nano dual-structures by amplitude modulation in multi-beam laser interference lithography (LIL). Moiré effect was applied to generate the amplitude modulation. The specific intensity modulation patterns can be obtained by the control of the parameter settings of incident laser beams. Both the incident angle and azimuth angle asymmetric configurations can cause the amplitude modulation in the interference optic field and the modulation period is determined by the angle offset. A four-beam LIL system was set up to fabricate patterns on photoresist and verify the method. The experimental results are in good agreement with the theoretical analysis

    Fabrication of periodically micropatterned magnetite nanoparticles by laser-interference-controlled electrodeposition

    Get PDF
    This paper introduces a laser-interference-controlled electrochemical deposition method for direct fabrication of periodically micropatterned magnetite (Fe3O4) nanoparticles (NPs). In this work, Fe3O4 NPs were controllably synthesized on the areas where the photoconductive electrode was exposed to the periodically patterned interferometric laser irradiation during the electrodeposition. Thus, the micropattern of Fe3O4 NPs was controlled by interferometric laser pattern, and the crystallization of the particles was controlled by laser interference intensity and electrochemical deposition conditions. The bottom-up electrochemical approach was combined with a top-down laser interference methodology. This maskless method allows for in situ fabrication of periodically patterned magnetite NPs on the microscale by electrodeposition under room temperature and atmospheric pressure conditions. In the experiment, Fe3O4 NPs with the mean grain size below 100 nm in the pattern of 5-lm line array were achieved within the deposition time of 100 s. The experiment results have shown that the proposed method is a one-step approach in fabricating large areas of periodically micropatterned magnetite NPs

    Capture and sorting of multiple cells by polarization-controlled three-beam interference

    Get PDF
    For the capture and sorting of multiple cells, a sensitive and highly efficient polarization-controlled three-beam interference set-up has been developed. With the theory of superposition of three beams, simulations on the influence of polarization angle upon the intensity distribution and the laser gradient force change with different polarization angles have been carried out. By controlling the polarization angle of the beams, various intensity distributions and different sizes of dots are obtained. We have experimentally observed multiple optical tweezers and the sorting of cells with different polarization angles, which are in accordance with the theoretical analysis. The experimental results have shown that the polarization angle affects the shapes and feature sizes of the interference patterns and the trapping force
    • …
    corecore