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Abstract. Beam incidence conditions in the formation of two-, three- and four-beam laser interference patterns

are presented and studied in this paper. In a laser interference lithography (LIL) process, it is of importance to 

determine and control beam incidence conditions based on the analysis of laser interference patterns for system 

calibration as any slight change of incident angles or intensities of beams will introduce significant variations of 

periods and contrasts of interference patterns. In this work, interference patterns were captured by a He-Ne laser 

interference system under different incidence conditions, the pattern period measurement was achieved by cross-

correlation with, and the pattern contrast was calculated by image processing. Subsequently, the incident angles 

and intensities of beams were determined based on the analysis of spatial distributions of interfering beams. As a 

consequence, the relationship between the beam incidence conditions and interference patterns is revealed. The

proposed method is useful for the calibration of LIL processes and for reverse engineering applications.
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1 Introduction

Laser interference lithography (LIL), as a powerful method for the fabrication of periodic 

micro and nano structures, is attracting extensive attentions for many applications [1, 2].

Besides the merits of high efficiency and low cost, LIL is developed to break through the 

limited area yielded by electron beam lithography (EBL) or focused ion beam lithography 

(FIBL) and fulfill the large-area fabrication. LIL is also a flexible method capable of 

producing various sub-wavelength fringe and dot structures in the cases of two-, three- and 

four-beam laser interference [3-8]. Recently, researchers reported that a wide variety of 

applications were achieved by LIL. Guo et al. employed two-beam laser interference

technology to pattern graphene oxide and hierarchical nanostructures were formed for the 
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production of a high performance humidity sensing device [9]. Guo and his co-worker 

reported that large-area microlens arrays were fabricated via a single step by laser interference 

ablation [10]. Jin et al. used two-beam LIL to fabricate metallic electrodes and enhanced the 

absorption in organic solar cells [11]. Castro-Hurtado et al. reported that the tungsten oxide 

(WO3) thin films were modified by three- and four-beam laser interference lithography and

the nanostructures with the feature sizes of 150-160nm in diameter were achieved. In the 

conclusion, they pointed out that the outstanding nanostructured films could be used as 

sensing layers for the detection of hazardous gases such as NO2 and H2S [12]. It can be seen 

from literatures that numerous efforts have been devoted to the fabrication of devices and 

functional materials based on the micro and nano structures by LIL. But, both theoretically 

and experimentally, the beam incidence conditions play a critical role in the determination of 

period and contrast in the formation of interference patterns.

It is known that the period of interference can be controlled by changing the incident 

angles of beams or the radiation wavelength [13]. For practical applications, the wavelength is

first selected so that the period depends on the incident angles. Meanwhile, the influences of 

polarized angles, azimuth angles and number of beams are also extremely important for 

obtaining desired interference patterns since the spatial distributions of interfering beams are a 

function of the mentioned parameters. In the case of two-beam laser interference, different 

incidence conditions introduced by the polarization vectors result in different contrasts [14].

In the case of three-beam laser interference, the modulation period is produced in the coplanar

incidence conditions, and in the case of four-beam interference, there are three different types 

of patterns produced by polarization modes [15]. To determine the relationship between the

beam incidence conditions and interference patterns, a series of steps, including image 

acquisition, processing and analysis based on the theory of physical optics, were taken to 

achieve high precision measurement and offer an effective way for the calibration of LIL 

processes.
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In the previous approaches, apart from direct measurement and Hough transform 

methods [16-18], mean-square-difference algorithm was employed to determine the period 

and slope of oblique fringes [19]. It was demonstrated that the methods had the advantages of 

averaging noise and nano-scale accuracy to measure two-beam interference patterns [20].

However, there has been no published work on three- and four-beam interference

measurements to determine the beam incidence conditions.

In a LIL process, any slight change of incident angles or intensities of beams will 

introduce significant variations of periods and contrasts of interference patterns, thus, it is 

essential to determine and control beam incidence conditions based on the analysis of laser 

interference patterns for system calibration. In this work, a He-Ne laser interference system 

was set up to obtain various interference patterns configuring different beam incidence 

conditions. Cross-correlation was applied to the calculation of periods and the pattern contrast 

was calculated by extracting the maximum and minimum grey-scale values from selected 

image patches or regions and averaging every contrast value of the whole region. Two-beam 

incidence conditions, three-beam coplanar and non-coplanar incidence conditions and four-

beam incidence conditions have been studied, and the calculations have been carried out 

systematically. The incident angles or intensities of beams are determined subsequently.

2 Fundamental Theories

2.1 Principle of LIL

A general form of N-beam laser interference can be considered as the superposition of 

electric field vectors of N beams (
321 ,, EEE


, ... and
NE


) and the mth vector can be written as

)cos( mmmmmm trkpAE  


.                                         (1)

In the electric field vector,
mk


and mp


can be expressed by

)cossinsincos(sin kjikk mmmmmm


  ,                              (2)
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where mA is the amplitude, mp


is the unit polarization vector, 
mk


is the vector in the propagation 

direction, mr


is the position vector,  is the frequency， m is the initial phase, 2k ,  is 

the wavelength, m is the incident angle, m is the azimuthal angle, and m is the polarized 

angle.

In the interference area, the intensity distribution can be expressed as

])([

1 1

2

1

)( nmnm rkki
N

m

N

n
nnmm

N

m
m epApAErI  

 
 


.                                      (4)

It has been demonstrated that the polarization vector plays a key role in the formation of 

interference patterns [14]. Thus, two-, three- and four-beam laser interference formulas with 

proposed beam incidence conditions are derived from Eqs. (1)-(4), which are discussed in the 

following sections.

2.2 Image processing algorithms

In order to determine the period of the interference patterns, two patches of interference 

patterns are selected as the fixed and reference image patches. It can be calculated that the 

fixed patch matches with the reference patch by means of the cross-correlation coefficient 

which represents the similarity numerically. The schematic of this algorithm is shown in Fig. 

1(a). The correlation coefficient, XY , between two matrices from the two image patches X

and Y is defined as:

   
YX

YX

YX
XY

YXEYX





 


),cov( .                                     (5)

where E is the expected value, cov is the covariance, X and Y are the mean values of X and 

Y, and X and Y are the standard deviations.

According to the theory of optics, the interference contrast is defined as



Page 5 of 15

Acc
ep

te
d 

M
an

us
cr

ip
t

5

minmax

minmax

II

II
K




 .                                                (6)

where Imax and Imin are the maximum and minimum interference intensities. For the 

calculation of contrast, the pattern is divided into N patches or regions. The pattern contrast 

can be calculated by extracting the maximum and minimum grey-scale values in every

selected patches or regions firstly and then averaging the contrast values of the whole image.

Fig. 1(b) illustrates the schematic of this algorithm.

Fig. 1 The schematic of image processing algorithms. (a) Principle of determining the period by pattern 

correlation; (b) Principle of determining the contrast.

3 Experimental Details

In the experiment, the He-Ne laser (CVI Melles Griot, 25-LHP-213) with the wavelength 

of 633nm and output power of 0.5mw was used for the LIL imaging system. The laser source 

takes advantages of good beam quality and 30cm coherent length. To perform real-time 

imaging, a CCD camera (PiontGrey, CMLN-13S2M-CS) replaces the exposed sample and a

20x Calilean beam expander is fixed before the camera as the period of interference is far 

smaller than the CCD pixel size.

The scheme of four different experimental setups is shown in Fig. 2. The main laser 

beam was divided into two, three or four coherent beams by beamsplitters and high-reflective 

mirrors. Half-wave plates and polarizers were used to control the power and polarized angles

precisely.



Page 6 of 15

Acc
ep

te
d 

M
an

us
cr

ip
t

6

Fig. 2 Schematic set-up for (a) Two-beam laser interference; (b) Non-coplanar three-beam laser interference; (c) Coplanar 

three-beam laser interference; (d) Four-beam laser interference. HR1, HR2, HR3, HR4, and HR5 are the high-reflective 

mirrors, BS1, BS2 and BS3 are the beamsplitters, H1, H2, H3, H4 and H5 are the half wave plates, P1, P2, P3, P4 and P5 are the 

polarizers and BE is the 20×Calilean beam expander.

4 Results and Discussions

4.1 Two-beam interference

In the two-beam laser interference, a periodic fringe pattern is produced with the incident 

angles of   21 , the azimuthal angles of  01 and  1802 , and the polarized angles of

 9021  , the intensity distribution can be expressed by

])sinsincos[2 2121
2
2

2
1 xkAAAAI beamtwo   （ .                              (7)

It can be seen from Eq. (7) that the period of the interference pattern is  sin2/d  in the case 

of the symmetrical two-beam incidence. Fig. 3(a) is the fringe pattern obtained by the CCD 

camera. The pixel number of phase shifts is 29.577 in Fig. 3(b). The pixel size of the CCD is 

3.75μm, and the measured period of the interference pattern is 5.546μm. In the experiments, 

the incident angles were set as  3.321  , which resulted in the period of 5.498μm 

theoretically. It is found that the offset between the designed angles and the measured angles 

is 0.03°. Moreover, with the calculation of the contrast, the intensity of each beam can be 
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determined. The maximum and minimum grey-scale values are extracted from the 96×128 

pixels patches which shift in the whole interference pattern. The final value is obtained by 

averaging all the contrasts with the shifting step of 10 pixels from the row and column 

directions. According to Eqs. (6) and (7), in this case, K can be written as 

2
2

2
1

212

AA

AA
K beamtwo 

 ,                                                   (8)

and the calculation result is 0.87. It can be concluded that the amplitude of one beam is 1.7 

times higher than that of the other one.

Fig. 3 (a) The CCD image of the two-beam laser interference; (b) Corresponding correlation coefficients as a 

function of phase shifts.

4.2 Three-beam interference in the non-coplanar incidence condition

In the cases of three-beam laser interference, there are generally two different 

configurations corresponding to coplanar and non-coplanar incidence conditions. The triangle 

distribution pattern is generated by the non-coplanar incidence condition while the dual-

grating pattern is generated by the coplanar incidence condition, as shown in Fig. 4. In the 

non-coplanar incidence condition, the three beams have the same incident angles of

  321 , and the azimuthal angles of 30°, 150° and 270°. In the coplanar incidence 
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condition, the incident angles of three beams are   21 , *
3   (  * ), and the 

azimuthal angles are,  031  and  1803 .

Fig. 4 2D simulations of three-beam interference distributions. (a) Non-coplanar incidence condition; (b) 

Coplanar incidence condition.

According to Eqs. (1)-(4), when the polarized angles are 0°, the equation of the three-

beam interference in the non-coplanar incidence condition is expressed as

)sin
2

3
sin

2

3
cos(

)sin
2

3
sin

2

3
cos(

)sin3cos(

32

31

21
2
3

2
2

2
1

ykxkAA

ykxkAA

xkAAAAAI beamthree













,                                     (9)

where  22 cossin2  . It can be seen that the period in the x direction is

 sin32xd ,                                                      (10)

and the period in the y direction is

 sin32yd .                                                       (11)

This means that the period in the x direction is 3 times larger than the other one, which 

shows a good correspondence with the simulation in Fig. 4(a). Thus, the three-beam laser 

interference method is able to generate the triangle or hexagon distribution pattern.

The triangle pattern shown in Fig. 5(a) was obtained experimentally. Fig. 5(b) indicates

that the respective pixel numbers of phase shifts in the x and y directions are unequal. 

According to the results of the correlation coefficient calculations, the measured period in the 

x direction is dx=7.854μm and that in the y direction is dy=4.401μm. The relationship of the 
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ideal pattern is 3yx dd and the experimental relationship is 785.1yx dd . It is demonstrated 

that the misalignment of the azimuthal angles causes a minor offset of 0.74° between the 

designed angles and the measured angles. Unlike the two-beam interference, the contrast of 

the three-beam interference in the non-coplanar incidence conditions is determined by the 

amplitude of each beam and has an effect on the incident angles. The contrast in this case is 

expressed as

3
3

2
2

2
1

323121

AAA

AAAAAA
K beamthree 


 .                                 (12)

To calculate the contrast, the incident angle needs to be determined first. As Fig. 5(b) 

and Eq. (10) suggested, the incident angle is 5.3°, so 9744.0 . Meanwhile, the contrast is 

calculated by the image processing method which is used in the two-beam interference and 

the result is 0.9706. Thus, it is demonstrated that the amplitudes are almost equal with each 

other.

Fig. 5 (a) The CCD image of the three-beam laser interference in the non-coplanar incidence condition; (b) 

Corresponding correlation coefficients in x and y directions as a function of phase shifts.

4.3 Three-beam interference in the coplanar incidence condition

When the azimuthal angles of three beams are in the same plane, a dual-grating structure 

pattern is produced. In the experiment, the initial laser beam was divided into three beams 

with the azimuthal angles of  031   and  902 , the polarized angles of
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 90321  , and the incident angles of   21  and *
3   (  * ). In this case, 

the intensity of interference '
beamthreeI   is expressed as

])cos(cos)sincos[(sin2

])cos(cos)sincos[(sin2

)sin2cos(2

**
32

**
31

21
2
3

2
2

2
1

'

zxAA

zxAA

xkAAAAAI beamthree













.                       (13)

Eq. (13) indicates that the intensity of interference is a function of the coordinates in the x and 

z directions. Generally, the interference is deemed to occur in the xy plane. This means that 

the value of z is zero, so there are three interference terms in the x directions. They are 

expressed as
























*3

*2

1

sinsin

sinsin

sin2










d

d

d

.                                                  (14)

In practice, *  and  are approximately equal with each other, consequently, d1 and d2

are approximately equal, and d3 is larger than them ( 1321   , dddd  ). Thus, it is the reason 

that the interference pattern exhibits dual periods. Fig. 6 shows the experimental result. From 

the curve in Fig. 6(b), the periods are calculated as d1=3.5625μm, d2=3.1875μm and 

d3=27.5625μm. According to the values and Eq. (14), the incidence conditions can be

determined, and they are  15. and  3.03.6* .
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Fig. 6 (a) The CCD image of the three-beam laser interference in the coplanar incidence condition; (b) 

Corresponding correlation coefficients as a function of phase shifts.

In this case, the contrast is expressed as

3
3

2
2

2
1

323121'

AAA

AAAAAA
K beamthree 


 .                                        (15)

and the calculation result is 0.734. The decrease of contrast could be caused by the unequal 

amplitudes of each beam.

4.4 Four-beam interference

The four beams follow a symetrical configuration with the azimuthal angles of 0°, 90°, 

180° and 270°. The polarization angles of four beams were 90°. It can be seen in Fig. 7(a) that 

a two-dimensional grating pattern and periodic dots are produced in this case and the 

maximum intensities distribute along both x and y axes. The formula of the four-beam laser 

interference can be expressed as

])sinsincos[2

])sinsincos[2

4242

3131
2
4

2
3

2
2

2
1

ykAA

xkAAAAAAI beamfour









（

（                   (16)

As Eq. (16) suggested, the intensity distribution of the four-beam interference is 

equivalent to the two exposures of two-beam interference by rotating the substrate with 90o.

When the incident angles are   4321 , the periods in the x and y directions are 

 sin2 yx dd . Fig. 7(b) shows the captured image of four-beam interference and the 
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measurements of phase shifts are illustrated in Fig. 7(c). The resulting periods in the x and y 

directions are 5.8121μm and 5.7192μm, respectively. According to Eq. (16), the incident 

angles can be concluded that 1 3 2 43.17 , 3.12and          . With the help of 

theoretical and image analysis, the deviations of 93nm and 0.05o have been determined.

Fig. 7 (a) 2D intensity profiles of the four-beam interference simulation; (b) The CCD image of the four-beam 

laser interference; (c) Corresponding correlation coefficients as a function of phase shifts.

4.5 Potential applications

It has been demonstrated that the proposed method is a powerful tool for analyzing

almost all types of beam incidence conditions in LIL. Furthermore, the imaging system can 

also be integrated into an LIL system to achieve real-time imaging and lithography. The 

schematic of the innovative system is shown in Fig. 8. Additional beamsplitter mirrors or 

prisms are utilized to set up the imaging system, keeping the original optical path unchanged.

Once the relationship of the incident angles between the LIL and imaging systems is 
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determined, real-time and dynamic calibrations can be achieved, which is an important

application in LIL processes.

Fig. 8 Schematic of the real-time imaging and lithography system.

5 Conclusions

In this work, beam incidence conditions are investigated theoretically and experimentally. 

It is demonstrated that beam incidence conditions have a significant impact on the period,

contrast and formation of interference patterns. To determine the beam incidence conditions, 

the periods and contrasts of interference patterns are measured by means of image processing 

with subpixel accuracy and subsequently the incident angles and intensities of beams are

calculated based on the theoretical analysis of spatial distributions of interfering beams. The 

relationship between the beam incidence conditions and interference patterns is revealed. The

proposed method is useful for the control and calibration of LIL processes, and for reverse 

engineering applications.

Acknowledgements

This work was supported by National Key Basic Research Programs of China (973 

Programs No.2012CB326406), National Natural Science Foundation Programs of China 

(No.61176002), Doctoral Programs of Higher Education of China (No.20112216110002), 

Jilin Provincial Science and Technology Programs (No.201115157 and No.20110704), 

Guangdong Science and Technology Programs (No.2009B091300006 and 

No.2011B010700101), Science and Technology Programs of Changchun City (No.09GH07

Laser

Substrate

Photoresist





'

'BE

CCD

HR3

HR2

HR1

BS1

BS2

BS3

Real-time imaging system



Page 14 of 15

Acc
ep

te
d 

M
an

us
cr

ip
t

14

and No.11KP04), and Programs of Changchun University of Science and Technology 

(No.2013S001).

References

1. Y. F. Liu, J. Feng, Y. G. Bai, J. F. Song, Y. Jin, Q. D. Chen, H. B. Sun, Omnidirectional emission from top-

emitting organic light-emitting devices with microstructured cavity, Opt. Lett. 37 (2012) 124-126.

2. D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, C. Maple, Direct modification of silicon surface by 

nanosecond laser inteference lithography, Appl. Surf. Sci. 282 (2013) 67-72. .

3. D. Y. Xia, Z. Y. Ku, S. C. Lee, S. R. J. Brueck, Nanostructures and functional materials fabricated by 

interferometric lithography, Adv. Mater. 23 (2011) 147-179.

4. M. Ellman, A. Rodrıguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. 

Olaizola, I. Ay-erdi, High-power laser interference lithography process on photoresist: Effect of laser 

fluence and polarisation, Appl. Surf. Sci. 255 (2008) 5537-5541.

5. A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, I. 

Ayerdi, J. Savall, S. M. Olaizola, Laser interference lithography for nanoscale structuring of materials: 

From laboratory to industry, Microelectron. Eng. 86 (2009) 929-936.

6. E. Ertorer, F. Vasefi, J. Keshwah, M. Najiminaini, C. Halfpap, U. Landbein, J. Carson, D. W. Hamilton, S. 

Mittler, Large area periodic, systematically changing, multishape nanostructures by laser interference 

lithography and cell response to these topographies, J. Biomed. Opt. 18 (2013) 035002. 

7. L. Xu, L. S. Tan, M. H. Hong, Tuning of localized surface plasmon resonance of well-ordered Ag/Au 

bimetallic nanodot arrays by laser interference lithography and thermal annealing, Appl. Optics 50 (2011)

G74-G79.

8. S. Qi, X. Yang, H. Lu, Research on multiple-beam interference of piontolite and measurement of minute 

wedge angle, Optik 124 (2013) 3586-3589.

9. L. Guo, H. B. Jiang, R. Q. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, H. B. Sun, 

Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the 

production of a flexible humidity sensing device, Carbon 50 (2012) 1667-1673.

10. R. Guo, D. Yuan, S. Das, Large-area microlens arrays fabricated on flexible polycarbonate sheets via 

single-step laser interference ablation, J. Micromech. Microeng. 21 (2011) 150101-6.

11. Y. Jin, J. Feng, X. L. Zhang, M. Xu, Y. G. Bi, Q. D. Chen, H. Y. Wang, H. B. Sun, Surface plasmon 

enhanced absorption in organic solar cellsby employing a periodically corrugated metallic electrode, Appl. 



Page 15 of 15

Acc
ep

te
d 

M
an

us
cr

ip
t

15

Phys. Lett. 101 (2012) 1633031-3.

12. I. Castro-Hurtado, T. Tavera, P. Yurrita, N. Pérez, A. Rodriguez, G. G. Mandayo, E. Castaño, Structural and 

optical properties of WO3 sputtered thin films nanostructured by laser interference lithography, Appl. Surf. 

Sci. 276 (2013) 229-235.

13. D. Wu, Q. D. Chen, J. Yao, Y. C. Guan, J. N. Wang, L. G. Niu, H. H. Fang, H. B. Sun, A simple strategy to 

realize biomimetic surfaces with controlled anisotropic wetting, Appl. Phys. Lett. 96 (2010) 0537041-3.

14. D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, C. Maple, Modification of silicon surface by direct Laser 

interference, Proc. 3M-NANO, (2012) 5-8.

15. D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, C. Maple, Effects of polarization on four-beam laser 

interference lithography, Appl. Phys. Lett. 102 (2013) 0819031-5.

16. Z. Wang, C. Quan, P. J. Bryanston-Cross, Analysis of oblique fringes by fringe pattern matching, Proc. 

SPIE 4317 (2001) 160-165.

17. Z. Ji,  J. Zhang, S. M. Olaizola, Y. K. Verevkin, C. Peng, C. Tan, T. Berthou, S. Tisserand, Z. Wang, 

Quality inspection of nanoscale patterns produced by laser interference lithography using image analysis 

techniques, Proc. IEEE ICMA (2009) 1835-1840.

18. X. Liu, L. Ma, H. Ren, B. Chen, L. Chai, W. Zheng, Multipe-surface interference fringes analysis basing on 

wavelength-modulated phase shifting interferometry, Optik 124 (2013) 4693-4696.

19. L. Liu, H. Pan, J. Xu, H. Xu, Y. Yue, D. Li, Z. Song, Z. Weng, Z. Hu, Z. Wang, J. Zhang, Oblique fringe 

measurement by pattern correlation, Proc. IEEE ICIA (2010) 940-945.

20. Z. Wang, S. Su, Y. K. Verevkin, S. Fatikow, Reference pattern-based 2D measurement with nano 

resolution, Proc. SPIE 6376 (2006) 63760M1-7. 


