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Abstract 

Nanoindentation technology has proven an effective method to investigate the viscoelastic 

properties of biological cells. The experimental data obtained by nanoindentation are 

frequently interpreted by Hertz contact model. However, in order to facilitate the application of 

Hertz contact model, a mass of studies assume cells have infinite thickness which does not 

necessarily represent the real situation. In this study, a rigorous contact model based upon 

linear elasticity is developed for the interpretation of indentation tests of flattened cells which 

represent a factual morphology. The cell, normally bonded to the petri dish, is initially treated 

as an elastic layer of finite thickness perfectly fixed to a rigid substrate, and the conic indenter 

is assumed to be frictionless. The theory of linear elasticity is utilized to solve this contact issue 

and then the solutions are extended to viscoelastic situation which is regarded as a good 

indicator for mechanical properties of biological cells. To test the present model, an AFM-

based creep test has been conducted on living human hepatocellular carcinoma cell (SMMC-

7721 cell) and its fullerenol-treated counterpart. The results indicate that the present model 

could not only describe very well the creep behavior of SMMC-7721 cells, but can also curb 

overestimation of the mechanical properties due to substrate effect. Moreover, the present 

model could identify the difference between the control and treated SMMC-7721 cells in terms 

of the extracted viscoelastic parameters, suggesting its potential in revealing the biomechanical 

effects of fullerenol-like drug treatment on cancerous cells. 

Keywords: Atomic force microscope (AFM); Nanoindentation; Substrate effect; Finite 

thickness of cell; Viscoelasticity; Creep 

 

1. Introduction 

The measurement of viscoelastic properties of living cells can provide important information 

about the biomechanical effects of drug treatment, diseases and aging. To date, a variety of 

testing techniques have been used to measure the viscoelastic mechanical properties of 

biological cells, e.g. micropipette aspiration [1], atomic force microscopy [2], optical tweezers 

[3, 4] and magnetic tweezers [5]. Compared with other techniques, AFM has many advantages 
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such as direct interaction with the sample, flexibility in option of probe type and convenient 

imaging of surface topography of cell. However, AFM-based quantification of the 

biomechanical property requires an appropriate rheological model which could describe the 

factual situation of cell indentation. Although Hertz contact model is frequently used to 

interpret the experimental data obtained by AFM indentation, one of its main assumptions, i.e. 

treating indented cell as semi-infinite space might be contradicted by the film morphology of 

cells after being removed from their native environment [6, 7]. In this sense, the estimation of 

cell properties would be affected by the stiff substrate. If not accounted for, substrate effect 

would lead to overestimation of the measured parameters [8‒10], e.g. elastic modulus, viscosity 

and diffusion. In this regard, it is essential to develop an effective means to characterize the 

effect of film thickness in cell indentation. 

The indentation of thin layer by spherical indenters has been commonly studied in the 

literature using either cumbersome numerical calculations or analytical modeling [11‒14]. In 

this sense, Dimitriadis et al. [15] adopted an imaging method to present a convenient correction 

to Hertz model for thin and elastic film subject to spherical tip indentation. Based on this 

modification, AFM measurements with spherical tip become a common experimental method 

to quantify the mechanical properties of spread cells [6, 16]. With a spherical indenter, the 

measured mechanical properties only represent an average response of a sample, while 

information of features smaller than size of indenter would be missing [8]. In addition, although 

Dimitriadis’s model has been modified to characterize conical tip indentation [8, 9], there exists 

inconsistency and non-uniformity between the multiplicative correction factors provided by 

these studies. In this regard, it is imperative to develop a universal correction to Hertz contact 

model to account for indentation of thin layers, regardless of size or profile type of the indenter.  

  In this work, we use linear theory of elasticity to develop a new correction to Sneddon’s 

solutions [17] for a conical tip indentation on thin layer, which could be used to improve the 

evaluation of the viscoelastic properties of flattened cell by nanoindentation. Meanwhile, an 

AFM-based creep test is performed on human hepatocellular carcinoma (SMMC-7721 cell), 

being one of the most common cancer types worldwide, and its fullerenol-treated counterpart. 

The validity of the present model is demonstrated by fitting it to the experimental data. The 

extracted viscoelastic parameters by our correction model are compared to the values 

determined by the conventional Sneddon’s solutions to verify that the present model could deal 

with substrate effect. Moreover, the determined viscoelastic properties of normal SMMC-7721 

cells are different from their fullerenol-treated counterparts, suggesting that the biomechanical 

parameters determined by our correction model could also be used as biomarker to evaluate the 

effects of fullerenol or other anticancer agents on the cells and thus can represent a crucial part 

of the potential cancer progression. In addition, it is worth noting that measurements of absolute 

values of viscoelastic modulus of cell prove a powerful tool to quantify the effect mutations of 

intracellular scaffolds (i.e. actin cortex) [18]. The semi-analytical dependence of indentation 

depth on time is given, which is more convenient in practical applications. To the best of our 



 

 

knowledge, the present study represents a first attempt of applying linear theory of elasticity to 

flattened cell to quantify its viscoelastic properties.  

 

2. Theoretical Model 

2.1 Formulation of elastic film indented by a rigid conic tip 

Consider the axisymmetric contact problem of a rigid conic tip on an elastic layer as illustrated 

in Figure 1. The layer is perfectly bonded to the rigid substrate at the interface z = h while the 

contact between the indenter and the film is assumed to be frictionless. The cylindrical 

coordinate (r, φ, z) is used as shown in Figure1, where the origin coincides with the overlapping 

point between the generatrix of the conic and the upper face of undeformed layer. Under these 

assumptions, the displacement boundary condition consists of: 

𝑤 = 𝛿 − 𝛹(𝑟)(0 ≤ 𝑟 ≤ 𝑎, 𝑧 = 0) (1a) 

𝑤 =  𝑢 = 0(0 ≤ 𝑟 < ∞, 𝑧 = ℎ) (1b) 

and the stress boundary condition is comprised of: 

𝜎𝑧 = 0 (𝑟 > 𝑎, 𝑧 = 0) (2a) 

𝜏𝑟𝑧 = 0 (0 ≤ 𝑟 < ∞, 𝑧 = 0) (2b) 

where σz and τrz are the normal and tangential stress components respectively and Ψ(r) denotes 

the axisymmetric shape of the indenter. Since the deformation of the layer subjected to the 

normal force P is axisymmetric, the radial displacement u and vertical displacement w are 

independent of the hoop coordinate φ and they satisfy the field equations of the linear theory of 

elasticity [19] for homogeneous, isotropic materials, given as: 

(1 − 2ν)∇2𝐮 + ∇(∇ ∙ 𝐮) = 0 (3) 

where u = (u, 0, w) is the displacement vector, ν denotes Poisson’s ratio and ∇ represents gradient 

operator. 
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FIGURE 1: Axisymmetric contact between a frictionless conic and an elastic layer perfected bonded to rigid substrate. 

 

  The solution of the axisymmetric contact problem depicted in Figure 1 could be solved in 

terms of Papkovich–Neuber solution for the expression of the components of displacement 



 

 

vector: 

2𝐺𝑢𝑟 = −
𝜕

𝜕𝑟
[𝛷0(𝑟, 𝑧) + 𝑧𝛷1(𝑟, 𝑧)] (4a) 

2𝐺𝑢𝑧 = −
𝜕

𝜕𝑧
𝛷0(𝑟, 𝑧) − 𝑧

𝜕

𝜕𝑧
𝛷1(𝑟, 𝑧) + (3 − 4𝜈)𝛷1(𝑟, 𝑧) (4b) 

and stress vector: 

𝜎𝑧 = 2(1 − 𝜈)
𝜕

𝜕𝑧
𝛷1(𝑟, 𝑧) −

𝜕2

𝜕𝑧2 𝛷0(𝑟, 𝑧) − 𝑧
𝜕2

𝜕𝑧2 𝛷1(𝑟, 𝑧) (5a) 

𝜏𝑟𝑧 =
𝜕

𝜕𝑟
[(1 − 2𝜈)𝛷1(𝑟, 𝑧) −

𝜕

𝜕𝑧
𝛷0(𝑟, 𝑧) − 𝑧

𝜕

𝜕𝑧
𝛷1(𝑟, 𝑧)] (5b) 

where Φi (i = 0,1) is harmonic function known as the Boussinesq‒Papkovitch potential 

functions [20], and G denotes shear modulus. Since the solution of stress and displacement 

under the mixed boundary conditions have been developed by many studies [21, 22], its detailed 

derivation procedure is not repeated in this study. Herein, we directly formulate the dependence 

of indentation force P and indentation depth δ on the contact radius a as 

𝑃 =
2𝑎𝐸𝛿

1−𝜈2 ∫ 𝜔(𝜏)𝑑𝜏
1

0
 (6a) 

and 

𝛿 = −
𝜋

2
𝑎𝑐𝑜𝑡𝜃

𝜔𝑐(1)

𝜔𝑓(1)
 (6b) 

respectively, where ω(τ) = ωf(τ) + πaωc(τ)cotθ/2δ, and ωc(τ) and ωf(τ) are the solutions of the 

following Fredholm integral equation of the second kind: 

𝜔𝑐(𝜉) +
1

𝜋
∫ 𝜔𝑐(𝜏)[𝐾(𝜏 + 𝜉) + 𝐾(𝜏 − 𝜉)]𝑑𝜉 = −𝜉

1

𝜏=0
 (7a) 

and  

𝜔𝑓(𝜉) +
1

𝜋
∫ 𝜔𝑓(𝜏)[𝐾(𝜏 + 𝜉) + 𝐾(𝜏 − 𝜉)]𝑑𝜉 = 1

1

𝜏=0
 (7b) 

respectively, in which   

𝐾(𝑢) =
𝑎

ℎ
∫

(3−4𝜈)𝑒−𝛼𝑠ℎ𝛼−𝛼(1+𝛼)−4(1−𝜈)2

𝛼2+4(1−𝜈)2+(3−4𝜈)𝑠ℎ2𝛼

∞

𝛼=0
𝑐𝑜𝑠 (

𝛼𝑎𝑢

ℎ
)𝑑𝛼 (8) 

If the dimensionless parameters  

𝜅 (
𝑎

ℎ
, 𝜈) = ∫ 𝜔(𝜏)𝑑𝜏

1

0
 (9a) 

𝜒 (
𝑎

ℎ
, 𝜈) = −

𝜔𝑐(1)

𝜔𝑓(1)
 (9b) 

and  

𝜓 (
𝑎

ℎ
, 𝜈) = 𝜅 (

𝑎

ℎ
, 𝜈) 𝜒 (

𝑎

ℎ
, 𝜈)⁄  (9c) 

are introduced, equation (6a) and equation (6b) could be rewritten as 

𝑃 =
𝜋𝐸

1−𝜈2 𝑎2𝑐𝑜𝑡𝜃 ⋅ 𝜓(
𝑎

ℎ
, 𝜈) (10a) 

and 



 

 

δ =
𝜋𝑎⋅𝑐𝑜𝑡𝜃

2𝜒(
𝑎

ℎ
,𝜈)

 (10b) 

respectively. The two Fredholm integral equations of the second kind could be solved by 

numerical method for a given value of a/h and ν. Since biological cell is always treated as 

incompressible, the Possion’s ratio ν equals 0.5, and thus the three dimensionless parameters 

are only dependent on a/h. After application of numerical techniques to equation (7a) and 

equation (7b), χ and ψ are solved and fitted by polynomials by least square method, formulated 

as  

𝜒(𝑎 ℎ⁄ ) = −0.46 (
𝑎

ℎ
)

3
+ 0.28 (

𝑎

ℎ
)

2
+ 0.57 (

𝑎

ℎ
) + 1 (11a) 

and 

𝜓(𝑎 ℎ⁄ ) = −0.26 (
𝑎

ℎ
)

4
+ 0.47 (

𝑎

ℎ
)

3
− 0.006 (

𝑎

ℎ
)

2
+ 0.0003 (

𝑎

ℎ
) + 0.5 (11b) 

respectively, whose fitting results are plotted in Figure2. Eliminating a in equation (10a) and 

(10b) could result in 

𝑃 =
2𝐸𝛿2𝑡𝑎𝑛𝜃

𝜋(1−𝜈2)
⋅ 2𝜒2𝜓 (12) 
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FIGURE 2: Polynomial fitting results of (a) χ(a/h, ν = 0.5) and (b) ψ(a/h, ν = 0.5). 

 

2.2 Viscoelastic Situation 

The viscoelastic behavior of materials can be simulated by the standard solid [23], which is 

shown in Figure 3. It is comprised of an elastic spring, which describes an instantaneous elastic 

deformation, placed in series with a parallel combination of a spring and dashpot, which 

describes a delayed elastic deformation. The stress σ applied on the spring element is 

proportional to its strain ε, i.e. σ = Eε, while the stress on the dashpot element is proportional to 

the rate of its strain, i.e. σ = η•dε/dt. The coefficient E and η denote elastic modulus and viscosity 

respectively. For the constitution shown in Figure 3, the corresponding constitutive relation is 

given as 

𝜎 +
𝜂

𝐸1+𝐸2

𝑑𝜎

𝑑𝑡
=

𝐸1𝐸2

𝐸1+𝐸2
휀 +

𝜂𝐸2

𝐸1+𝐸2

𝑑

𝑑𝑡
 (13) 

where E1 and E2 denote the two spring constants. If the stress σ is a unit Heaviside step function 

σ = H(t), the corresponding output strain is termed creep compliance J(t), given as: 

𝐽(𝑡) =
1

𝐸2
+

1−𝑒−𝑡 𝜏⁄

𝐸1
 (14) 

where τ = η/E1, termed characteristic retardation time corresponding to the time during which 

the sample deforms by 1-e-1 (or 63.2%) of the total creep deformation. It can be seen from 

equation (14) that J (0+) = 1/E2, and J (∞) = 1/E1 + 1/E2. Therefore, the standard solid model 

has an instantaneous modulus E0 = E2 and equilibrium modulus E∞ = E1E2/(E1+E2). It should 

be pointed out that the standard solid model is a relatively universal model and it covers two 

extreme cases. For example, as E2→∞, Figure3 degrades to a spring in parallel with a dashpot 

(Kelvin model) whilst as E1→0, standard solid model reduces to a spring in series with a 

dashpot (Maxwell model). 
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FIGURE 3: Schematic diagram of standard solid model where a first spring (whose stiffness is E1) is in parallel with a 

dashpot and then connected with a second spring (whose stiffness is E2).  

 

For the viscoelastic situation, both Lee and Radok [24] and Ting [25] offered a general 

solution to linear viscoelastic Boussinesq problem (an infinite half-space indented by an 

arbitrary shape of rigid, axisymmetric and frictionless punch) as long as the contact radius is 

non-decreasing as mutual approach increases. According to their theory, substituting the elastic 

modulus in the Sneddon’s solutions with the modulus-displacement convolution in the time 

domain leads to the relationship between the contact radius a and the applied force F as [26, 

27]: 

𝑎2(𝑡)𝜓(
𝑎

ℎ
) =

1−𝜈2

𝜋
𝑡𝑎𝑛𝜃 ⋅ 𝐽(𝑡) ∗ 𝐹(𝑡) (15) 

where the asterisk denotes convolution, i.e. 

𝐽(𝑡) ∗ 𝐹(𝑡) = ∫ 𝐽(𝑡 − 𝜉)
𝑑

𝑑𝜉

𝑡

𝜉=0− 𝐹(𝜉)𝑑𝜉 (16) 

Performing Laplace transform on both sides of equation (16) yields 

ℒ[𝑎2(𝑡)𝜓(
𝑎

ℎ
)] =

1−𝜈2

𝜋
𝑡𝑎𝑛𝜃ℒ[𝐽(𝑡)]ℒ[

𝑑𝐹(𝑡)

𝑑𝑡
] (17) 

If F(t) is assumed to be an Heaviside step function, one has  

ℒ[𝑎2(𝑡)𝜓(
𝑎

ℎ
)] =

1−𝜈2

𝜋
𝑡𝑎𝑛𝜃ℒ[𝐽(𝑡)]𝐹𝑚𝑎𝑥 (18) 

Performing inverse Laplace transform on equation (18) results in  

[
𝑎(𝑡)

ℎ
]2 𝜓[

𝑎(𝑡)

ℎ
] =

1−𝜈2

𝜋
𝐽(𝑡)

𝐹𝑚𝑎𝑥

ℎ2 ⋅ 𝑡𝑎𝑛𝜃 (19) 

On the other hand, the time-dependent indentation δ(t) and contact radius a(t) are also related 

by equation (10b), i.e. 

𝛿(𝑡) =
𝜋𝑎(𝑡)⋅𝑐𝑜𝑡𝜃

2𝜒[
𝑎(𝑡)

ℎ
]

 (20) 

Therefore, the dependence of indentation depth δ(t) on time could be derived by solving 

equation (19) and substituting a(t) into equation (20), which is ready for fitting the δ‒t curve 



 

 

obtained by experiment. 

 

3. Materials and Methods 

To validate the present model, AFM-based creep tests have been performed on SMMC-7721 

cell. 

3.1 Cell Preparation 

SMMC-7721 cells were revived after being frozen in freezer and was incubated in Roswell 

Park Memorial Institute (RPMI)-1640 media with 10% of fetal bovine serum (FBS) and 

antibiotics (penicillin-streptomycin solution). The protocol for the culture and fullerenol 

treatment of SMMC-7721 cells have been described in details elsewhere [28].  

 

3.2 Atomic Force Microscopy 

The module of the AFM employed in this study is JPK NanoWizards 3 BioScience (Berlin, 

Germany), and it is mounted on an inverted optical microscope (Olympus IX71; Tokoy, Japan), 

allowing the AFM and optical microscope imaging simultaneously. The criterion for cantilever 

selection is that the compliance of the cantilever should be within the range of the sample 

compliance. For very soft and delicate cells, the softest cantilevers are available with spring 

constants ranging from 0.01 to 0.06 N/m (JPK Application Note). Before indentation, the spring 

constant of the AFM cantilever was calibrated. A silicon nitride cantilever whose spring 

constant is 0.059 N/m after calibration, was used for cell-tip indentation in this work. The probe 

is a square pyramid tip with a half-opening angle of α = 25° (half-angle to face), and its radius 

and height are 10 nm and 4 μm respectively, as can be seen in Fig. 4 (c) and (d).  
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FIGURE 4: Schematic of a compliant semi-infinite space indented by (a) a square pyramid and (b) a conic indenter. α 

and β denote the half-opening angle of the pyramid and conic indenter respectively. 

 

  Figure 4(a) shows schematically that the displacement of a pyramid tip along a distance δ 

inwards a half-space material creates a tip-material contact area, which is determined by the 

contact depth h. Since the AFM cantilever tip is a pyramid, the projection area A of the tip-

sample contact surface is not circular, i.e. not axisymmetric. However, numerical analysis [29, 

30] indicates that Figure 4(a) could be approximated by the contact between a conic indenter 

and substrate material as illustrated in Figure 4(b) with a negligible error of 0.012, as long as 

the conic gives the same projected area-to-depth ratio A/h as that of pyramid. In this regard, the 

half-opening angle β of the conic equals 27.75°in order to retain the same area-to-depth ratio 

of pyramid shown in Figure 4(a). 
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FIGURE 5: Schematic of the AFM indentation force versus time (a) and its approximation (b) by Heaviside step 

function. 

 

3.3 Loading method 

The determination of viscoelastic properties of material is commonly realized by the creep 

response to a prescribed load. The loading method of indentation force illustrated in Figure5 is 

to realize the creep test on single cells. Figure 5(a) depicts the factual loading history, which 

could be approximated by an Heaviside step function as shown in Figure 5(b), as long as the 

loading period (stage I) is smaller than one tenth of that of dwelling period (stage II) [12]. In 

the present AFM-based creep test, the creep tests were conducted by constant force delay mode 

where the force reaches its maximum value (2 nN) within 0.25 seconds and resides at the peak 

value for 5 seconds.  

 

4. Results and discussions 

4.1 Cell topography analysis 
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FIGURE 6: (a) and (b) represent AFM deflection image of control and treated cells respectively. (c) and (d) denote the 



 

 

3D distribution of cell height for control and treated cells respectively. (e) and (f) are the corresponding statistics of 

cell height value for control and treated cells respectively.  

 

Priority to creep test, the contact mode of AFM was used for topography imaging of the cells. 

The AFM deflection images of both control (Figure6 (a)) and treated cell (Figure 6(b)) were 

obtained by the AFM contact imaging mode in real-time. The majority of control cell shape are 

polygonal (Figure 6(a)) whist after being treated by fullerenol, the SMMC-7721 cell exhibits a 

significant change from polygon to shuttle as shown in Figure 6(b). In addition, the AFM 

deflection imaging can also enable us to investigate the height distribution of individual cells. 

The 3D view of cell topography (Figure 6(c) and (d)) indicates that both control and treated 

cells spread above the substrate, which is further confirmed by the histogram (Figure 6(e) and 

(f )) of pixel value where the narrow range suggests that the cell is fairly flat. The statistical 

analyses of the cell height and surface roughness of the control and treated cells are shown in 

Figure 7. Significant increase in the mean height after fullerenol treatment could be observed 

while there is no conspicuous variations in the surface roughness between the two types of cells.  

 

 

FIGURE 7: The statistics results of cell height and surface roughness. Data are expressed as mean ±SEM of more than 

30 cells from 3 separate experiments, where key significances are shown, **p < 0.01. 

 

4.2 Analysis of creep test curves 

Although the elastic modulus is frequently used to characterize the mechanical properties of 

biological cells, it does not present a complete description. It can be seen from the blue bold 

curve in Figure 8 that the cell exhibits a time-dependent deformation under the invariant 

indentation force, i.e. they creep. Therefore, it is more appropriate to treat the cell as viscoelastic. 

The mechanical response of the cell to the applied force ranges on a time scale of several 

seconds, which is very slow compared with the loading time. Therefore, the mechanical 

response of the cell is divided into two components: an instantaneous, elastic response and a 

delayed elastic response due to creep deformation. In this study, standard solid model of 

viscoelasticity theory is used to describe the mechanical response of the cell, which is 

characterized by three parameters: instantaneous modulus E0, equilibrium modulus E∞ and 



 

 

viscosity η, as introduced by equation (13) and Figure 3. Since SMMC-7721 cell spreads like 

film as analyzed in Sect. 4.1, the present contact model developed in Sect. 2 is justified for 

fitting process, in which the local thickness of the indented point was estimated by the AFM 

deflection imaging function as mentioned in Sect. 4.1. For the purpose of comparison, 

Sneddon’s solutions are also used for fitting where the cell is treated as semi-infinite space. We 

find that the fits of these two models to the creep deformation data are very good regardless of 

the cell type, as can be seen in Figure 8, with coefficient of determination close to one (R2 ≥ 

0.93).  
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FIGURE 8: Fitting results of control cells ((a) and (c)) and treated cells ((b) and (d)) by the two models. 

 

4.3 Cell Viscoelastic Properties 

The viscoelastic parameters of control and treated cells were determined according to 

Sneddon’s solutions and the present model, and their mean values are presented in Figure9. In 

the present model, the value of cell thickness is determined by the AFM deflection imaging. It 

can be seen that the three parameters determined by the present model are lower than that 

determined by the Sneddon’s solutions, regardless of the cell type, which indicates that the 

present model could alleviate the overestimation of biomechanical properties by Sneddon’s 

solutions. 

  From Figure 9, it could be also seen that the average elastic modulus and viscosity of the 

treated cells show a diminishing trend compared to those control cells, regardless of whichever 

model adopted. Concretely, control cells have significant higher (P < 0.01) instantaneous 
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modulus and viscosity than the instantaneous modulus and viscosity of treated cells, while the 

equilibrium modulus of control cell is slightly higher that its treated counterpart. Previous 

studies have already reported that both elasticity and viscosity are heavily impacted by the 

levels and organization state of actin cortex [31]. Since actin cortex are transformed into actin 

aggregates and distributed irregularly within the cells after being treated by fullerenol [32], we 

infer that this transform of actin cortex induces variation of the viscoelastic parameters of 

SMMC-7721 cells. 

  In our study, we treat the cell as a homogeneous material and thus present a global equivalent 

quantification of viscoelastic properties of the cell. We admit that the assumption of 

homogeneity is a limitation in our present work, and inhomogeneous model would present more 

details. For example, Feneberg et al. [33] measured shear elasticity of cell envelops using 

magnetic tweezer technique, which is important in terms of providing insight into the structure 

of cell envelops or cytoplasm. 
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FIGURE 9: The statistics results of (a) E0 , (b) E∞ and (c) η. Data are expressed as mean ±SEM of more than 30 cells 

from 3 separate experiments, where key significances are shown, **p<0.01. 

 

4.4 Validation and comparison 

In order to further validate the capability of the present model in alleviating the substrate effect, 

we present a test of it on different height area of cell as elaborated follows. As shown in Figure 

10(a), we select an arbitrary intersecting surface and plot the variation of cell height along the 

cut path. Creep tests are performed along the path and the indentation depth-time curves are 

fitted by both models. The variation of the instantaneous modulus (E0) and the equilibrium 

modulus E∞ along the cutting path is plotted in Figure 10(c) and (d) respectively. At the nucleus 

region (10 < x < 20 μm), the determined elastic moduli exhibit uniformity, indicating material 

homogeneity in this area. In the region around the nucleus (5 < x < 10 μm & 22 < x < 30 μm), 

there exists actin filaments network which plays a key role in cellular mechanical stability, and 

therefore we observe increase of elastic modulus in this area. At the margin of the cell (0 < x < 

5 μm & 30 < x < 34 μm), the elastic modulus decreases since the density of actin filaments 

declines in this area. In all regions, the Sneddon’s solutions result in higher elastic modulus 

compared to the present model. In the nucleus region where the local thickness is high, the 

ration δ/H is low, and thus one gets low value of the correction factor in equation (12), resulting 

in nearly equal elastic modulus predicted by the two models. The substrate effect becomes 

significant at the margin area, where the multiplicative factor dominates in equation (12).  
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(d) 

FIGURE 10: (a) Deflection image of single control cell with the scanning range of 55×55 μm. (b) Cell height profile, 

indentation depth and δ/H variation along cut path. (c) and (d) denote elastic moduli variation along cut path.  

 

5. Conclusions 

In this paper, we first introduce the present model based on the contact mechanics of thin film, 

and this model underlies the interpretation of flattened cell subjected to AFM indentation. The 

present model relieves the major assumption of semi-infinite space of classic Sneddon’s 

solutions to account for the realistic morphology of spread cells. Afterwards, the model is 

extended to viscoelastic constitution to reflect cell’s viscoelastic nature. The AFM-based creep 

test was conducted to validate the present model. The topography imaging of SMMC-7721 cell 

confirms the cells exhibit flattened morphology which justifies the application of present model. 

The fitting results have shown that the present model can not only describe very well the creep 

behavior of the SMMC-7721 cell, but also avoid the overestimation of elastic and viscosity 

properties of thin film due to substrate effect. Hereupon, we account for the suppression of 

overestimation by the present model in terms of correction factor. In addition, the present model 

could identify the variations of the SMMC-7721 cell and its fullerenol-treated counterpart in 

terms of the extracted viscoelastic parameters, which reveals its instructive significance in 

understanding fullerenol-induced effect on the viscoelastic properties of cancerous cells, and 

the potential in anticancer drug in terms of fullerenol application.   
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