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This paper discusses the effects of laser fluence on silicon modification by four-beam laser interfer-

ence. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for

the fabrication of surface structures, and the number of laser pulses was applied to the process in

air. By controlling the parameters of laser irradiation, different shapes of silicon structures were

fabricated. The results were obtained with the single laser fluence of 354 mJ/cm2, 495 mJ/cm2, and

637 mJ/cm2, the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the

laser wavelength of 1064 nm, and the pulse duration of 7–9 ns. The effects of the heat transfer and

the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equa-

tions of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser

interference distribution were proposed to describe their impacts on silicon wafer surfaces. The ex-

perimental results have shown that the laser fluence has to be properly selected for the fabrication

of well-defined surface structures in a four-beam laser interference process. Laser interference pat-

terns can directly fabricate different shape structures for their corresponding applications. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937579]

I. INTRODUCTION

Silicon is the basic and important semiconductor mate-

rial for optical and electronic devices, and the laser process-

ing of silicon wafers is widely used in the fabrication of ICs,

processors, memories, sensors and solar cells. Thus, laser

interactions with silicon surfaces have been extensively stud-

ied and attracted more attention in recent years.

Focused single laser beam processing was widely used

for the texturization of silicon surfaces for the fabrication of

solar cells, and black silicon with superior absorption prop-

erty was demonstrated.1 Many investigations have been

devoted to the processes induced by direct femtosecond (fs),

picosecond (ps), and nanosecond (ns) laser processing to

produce silicon surface textures for decades.2,3 The results

are dependent on the laser beam parameters (such as the

energy density, pulse duration, wavelength, and pulse repeti-

tion rate), and the number of exposure pulses or interaction

time and material modification threshold.4,5 The defined

structures with special features such as ripples and columns

can be created with proper selections of the above parame-

ters.5,6 The physical phenomena of amorphization, melting,

re-crystallization, nucleated vaporization, and ablation were

observed during a whole laser processing cycle.5

A number of approaches have been made to study the

interaction mechanism between focused laser beams and

semiconductor materials. Wang et al. investigated the dam-

age thresholds on single-crystals induced by millisecond,

nanosecond, and picosecond lasers.7 Chichkov et al.

presented the theoretical models and explanations of experi-

mental results from femtosecond, picosecond, and nanosec-

ond lasers.8 Chichkov et al. reported the ablation of metals

by ultrashort laser pulses.9 All the above approaches are

based on focused laser processing technologies, and time

consuming is a significant disadvantage for low-cost mass

production due to the laser scanning speed limit.

Compared with focused single laser beam processing, an

alternative approach is laser interference lithography tech-

nology, which is concerned with the use of interference pat-

terns generated from two or several coherent beams of laser

radiation for the modification of materials.10,11 Zhang et al.
demonstrated periodic antireflection surface structure fabri-

cation on silicon by four-beam laser interference lithogra-

phy.12 Zhao et al. made a silver grating by direct laser

interference writing.13 P�erez et al. fabricated the sub-

micrometric metallic hollow-core structures by laser

interference lithography.14 Wang et al. proposed both antire-

flection and superhydrophobicity structures fabricated by

direct laser interference nanomanufacturing.15 Li et al. pre-

sented a method for the fabrication of highly ordered super-

hydrophobic micro-nano dual structures on silicon by direct

laser interference lithography.16 These approaches have

demonstrated that laser interference lithography is a promis-

ing technology, which has the advantages of re-configurable

patterns and the creation of program controlled structures

over large areas for the fabrication of periodic structures on

various materials.17 However, the effect of laser fluence on

silicon modification by laser interference is not adequately

addressed considering the heat flow distribution, the radia-

tion effects of laser plasma, and the fluence accumulation
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with the selection of the number of exposure pulses or the

interaction time. In addition, the difference of four-beam

direct laser interference and single beam laser processing in

the heat flow distributions and effects of laser plasma and

fluence accumulation have been discussed.

In this work, four-beam laser interference was used to

pattern single crystal silicon wafers for the fabrication of sur-

face structures, and the number of laser pulses was applied

to the process in air. By controlling the parameters of laser

irradiation, different shapes of silicon structures were

obtained. The effects of the heat transfer and the radiation of

laser interference plasma on silicon wafer surfaces were

investigated. The equations of heat flow and radiation effects

of laser plasma of interfering patterns in a four-beam laser

interference distribution were proposed to describe their

impacts on silicon wafer surfaces. The details are described

in Sections II–V.

II. PRINCIPLE

Interference patterns can be arrays or matrices of laser

beam lines or dots with different periods, feature sizes, and

pattern shapes.18 For two-beam laser interference, the pattern

is an array of lines or grating. The intensity distribution of

the interference pattern I can be expressed as

I ¼ 2I0½1þ cosð2kx sin hÞ�; (1)

where I0 is the intensity of the two beams, k ¼ 2p=k is the

wave number, k is the wavelength of the laser, and h is the

beam incident angle.

The period of the fringe pattern P can be calculated by

P ¼ k
2 sin h

: (2)

The pattern period is a function of the wavelength (k)

and the incident angle of the beams (h). It indicates that the

period can be adjusted from nano- to micrometers, which is

flexible for many applications.

Fig. 1 shows a configuration of four-beam laser inter-

ference and an array of laser dots is formed. The four-

beam interference can be described as the superposition

of electric field vectors of four laser beams, and it can be

written as

~E ¼
X4

i¼1

~Ei ¼
X4

i¼1

Ai
~Pi cosðk~ni �~ri62pxtþ /iÞ; (3)

where Ai is the amplitude, ~Pi is the polarization vector, k is

the wave number, ~ni is the unit vector in the propagation

direction, ~ri is the position vector, /i is the phase constant,

and x is the frequency. It can be seen that the interference

pattern is a function of the above parameters. In general, the

beam intensity determines the peak energy, the incident

angle determines the pattern period, and the polarization

direction determines the pattern contrast.

The intensity distribution of the interference pattern Imn

can be expressed as

Imn ¼
X4

i¼1

X4

t¼1

j~Eijj~Etj cosh~Ei � ~Eti: (4)

Fig. 2 illustrates the principle of four-beam laser inter-

ference lithography with three material modification thresh-

olds corresponding to three planes. A particular feature size

can be obtained by adjusting the laser pulse energy according

to the material modification threshold.

III. EXPERIMENTAL DETAILS

The laser interference system used a seeded Q-switched

Nd:YAG laser source with the wavelength of 1064 nm, pulse

duration of 7–9 ns, pulse repetition rate of 10 Hz, and

Gaussian beam of 6 mm in diameter. Two experiments were

carried out. One was that the single laser pulses of 354

mJ/cm2, 495 mJ/cm2, and 637 mJ/cm2 were used. The other

was that the laser pulses of 30, 100, and 300 were used.

In the four-beam interference system, as shown in Fig.

3, one laser beam was split into four equal parts using

beamsplitters and mirrors. Three optical beamsplitters

FIG. 1. Schematic diagram of four-beam laser interference. FIG. 2. Principle of four-beam laser interference lithography.
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divided the input beam into four noncoplanar coherent

beams. A set of mirrors (M1, M2, M3, M4, M5, and M6)

steered the beams towards the silicon substrate with the

desired angles of incidence (h1 ¼ h2 ¼ h3 ¼ h4). The optical

paths of the four beams were identical in order to ensure the

spatial overlap of the same parts of the laser spot in the inter-

ference field.

The emitted laser fluence of a single pulse was divided

into four beams by beamsplitters. The four beams were

recombined on the surface of the silicon wafer with specified

incident angles, creating periodic interference patterns. The

four beams were symmetrically configured in the space dis-

tribution with the azimuthal angles of 0�, 90�, 180�, and

270�. In the experiments, the incident angles of 5.5� and the

polarization angles of 0�, 90�, 0�, and 90� were selected. The

combination of 1/4 wave plates and polarizers was used to

control the pulse energy level of single beams and the polar-

ization direction of each beam. The polarization has a great

influence on the intensity distribution of laser interference.19

The substrates used in the experiments were single side pol-

ished monocrystalline silicon wafers with (100) orientation.

After the structures fabricated on the samples, a scanning

electron microscope (SEM, FEI XL30) was used to perform

the measurements.

IV. RESULTS AND DISCUSSION

There are two physical models that explain the interac-

tions between the laser and silicon wafer surface in the fabri-

cation process of different structures: the heat transfer model

and the radiation effects of laser plasma.20 Following the

laser radiation, the silicon wafer will be heated, melted, and

then vaporized, and several physical processes will also

occur, such as oxidation, amorphization, and re-

crystallization.

For the heat transfer interaction process between the

laser and silicon wafer surface, there are two crucial absorp-

tion mechanisms, which are intrinsic absorption and free-

carrier absorption during the interaction process between the

laser and silicon wafer surface depending on the laser and

material parameters.7 A heat flow expression can describe

the laser influence process8,9

Ce
@Te

@t
¼ @

@z
K
@

@z
Te � c Te � Tið Þ þ S; (5)

Ci
@Ti

@t
¼ c Te � Tið Þ; (6)

S ¼ IðtÞAa expð�azÞ; (7)

where S is the laser heating source term, Te and Ti are the tem-

peratures of the electron gas and the lattice, Ce and Ci are the

heat capacities, K is the thermal conductivity, c is the coupling

constant, se ¼ Ce=c is the electron cooling time, and si ¼ Ci=c
is the lattice heating time. The spatial model of the incident

laser beam is assumed as Gaussian distribution and assumed to

increase exponentially with time as IðtÞ ¼ I expðt=sLÞ, where

sL is the laser pulse duration, A is the surface absorptivity, a is

the material absorption coefficient, and I is the intensity distri-

bution. The heat flow expression for the single beam laser

influence expressed in Eqs. (5)–(7) can explain the phenomena

of laser interaction with silicon wafer such as heat distribution,

transfer, and ablation.5–8

The intrinsic absorption is the generation of electron–-

hole pairs when electrons are thermally excited from valence

bands into conduction bands. The condition of the intrinsic

absorption is that the corresponding photon energy (hv) is

greater than the band gap (Eg). In the experiments, the laser

wavelength was 1064 nm, the band gap (Eg) of silicon was

1.12 eV at room temperature, and the corresponding photon

energy was hv ¼ hðc=kÞ ¼ 1:17 eV > 1:12 eV. The tempera-

tures Te and Ti are produced by intrinsic absorption and free-

carrier absorption, as shown in Eqs. (5) and (6). The process

of laser energy transition inside a silicon wafer can be con-

sidered as the generation of carriers, the energy absorption of

carriers, and the energy transfer from carriers to lattices.7

Since the heating source is the nanosecond laser, and

sL � si. It means that the temperatures of the electron gas Te

and the lattice Ti are equal, i.e., Te ¼ Ti ¼ T. Hence, Eqs. (5)

and (6) can be simplified as8

Ci
@T

@t
¼ @

@z
K
@

@z
T þ S; (8)

where z is in the direction perpendicular to the silicon wafer

surface. The process of laser interaction with the silicon wa-

fer surface can be described as that the laser pulses first heat

the silicon wafer surface to the melt and then to the boiling

point.8

In the case of four-beam laser interference, the interfer-

ence pattern consists of a periodic distribution of the inten-

sity. Fig. 2 shows the principle of four-beam laser

interference lithography with the intensity distribution from

computer simulation. The intensity distribution of interfer-

ence pattern Imn can be expressed as

Imn ¼

I11 I12 :::::: I1n

I21 I22 :::::: I2n

:::::: :::::: :::::: ::::::

Im1 Im2 :::::: Imn

2
666664

3
777775
; (9)

and each element in the matrix can be considered as a laser

intensity distribution. The laser interference intensity is

assumed to increase exponentially with the exposure time.

Hence, the laser interference intensity IðtÞmn with the expo-

sure time t can be expressed as9

FIG. 3. Schematic diagram of a four-beam laser interference system.
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IðtÞmn ¼ Imn expðt=sLÞ

¼

I11 I12 :::::: I1n

I21 I22 :::::: I2n

:::::: :::::: :::::: ::::::

Im1 Im2 :::::: Imn

2
6664

3
7775 � expðt=sLÞ; (10)

and the laser interference heating source term Smn can be

expressed as

Smn ¼ IðtÞmnAa expð�azÞ ¼ ImnAa expð�azþ t=sLÞ

¼

I11 I12 :::::: I1n

I21 I22 :::::: I2n

:::::: :::::: :::::: ::::::

Im1 Im2 :::::: Imn

2
6664

3
7775 � Aa expð�azþ t=sLÞ:

(11)

Fig. 4 shows a sectional plot of the four-beam laser in-

terference intensity distribution based on the Gaussian laser

interference source. The heat flow expression of the four-

beam laser interference distribution can be written as

Ci
@Tmn

@t
¼ @

@zmn
K

@

@zmn
Tmn þ Smn; (12)

where Tmn is the temperature distribution of laser interfer-

ence and Zmn is the direction perpendicular to the silicon wa-

fer surface. Each interfering dot intensity distribution in an

interference pattern can be considered as a heat flow process,

and Eq. (12) describes the process of an array of the dot in-

tensity distributions. Different distributions of temperatures

and depths with time on a silicon surface can be obtained

according to the total heat flow process of four-beam laser

interference.

An expression for the ablation threshold fluence after

irradiation with N pulses is related to the single shot ablation

threshold5

/ðNÞ ¼ /ð1Þ � Nn�1; (13)

where /ðNÞ denotes the modification threshold fluence for N
laser pulses, and n is a material-dependent coefficient of

0.84.5 The diameter of the ablation crater D is related to the

maximum laser fluence on the silicon wafer as the following

expression:22

D2 ¼ 2w2
0 ln

u0

uth

� �
; (14)

where u0 is the maximum fluence of the Gaussian beam pro-

file, uth is the ablation threshold fluence, and w0 is the beam

radius.

Thus, for the four-beam laser interference, Eqs. (13) and

(14) can be expressed in the form of matrix as

umnðNÞ ¼ umnð1Þ � Nn�1; (15)

Dmn
2 ¼ 2w2

0mn ln
u0mn

uthmn

� �
: (16)

An accumulation of energy (i.e., non-complete dissipa-

tion of the deposited energy) into silicon wafer has also suc-

cessfully been employed as N � umnðNÞ.
For the laser plasma process that affects on the silicon

wafer surface, the accumulation of laser energy can cause

the increase in the temperature of silicon wafer, break its

threshold, and make a small part of the sample melted and

gasified. Then, the gaseous silicon can tend to ionize and

form the laser plasma. In addition, the laser plasma can

absorb more laser energy, becomes high-temperature and

high-pressure, and then continuously explodes sharply and

compresses the ambient air.21

Hence, the generation and expansion of the laser plasma

can cause the appearance of laser shock wave, which forms

the flower-like silicon structures and the subsequent heat

transfer inside the silicon wafer. Each of flower-like silicon

structures consists of a silicon hole and many irradiated par-

ticles which are homogeneous around the hole, as shown in

Fig. 5. The shock wave radius can be written as20

R tð Þ ¼ A
Q

q1

� �1
5

t
2
5; (17)

where Q is the laser energy, R is the radius of laser shock

wave, t is the interaction time, q1 is the density of surround-

ing air, and A is the constant related to the air parameters.

Thus, in the case of four-beam laser interference, the laser

energy Qmn distribution can be expressed as

Qmn ¼

Q11 Q12 :::::: Q1n

Q21 Q22 :::::: Q2n

:::::: :::::: :::::: ::::::

Qm1 Qm2 Qm3 Qmn

2
6664

3
7775 ¼ Imn � SAmn � TLaser;

(18)

SAmn ¼

SA11 SA12 :::::: SA1n

SA21 SA22 :::::: SA2n

:::::: :::::: :::::: ::::::

SAm1 SAm2 :::::: SAmn

6666664

7777775; (19)

where TLaser ¼ Nlaser � s, Nlaser is the number of laser pulses,

s is the pulse duration, Imn is the laser fluence, and SAmn is

the area of the laser spot. The four-beam interference shock

wave radius can be written as
FIG. 4. A sectional plot of the four-beam laser interference intensity

distribution.
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Rmn tð Þ ¼ A
Qmn

q1

� �1
5

t
2
5 ¼ A

Imn � SAmn � TLaser

q1

� �1
5

t
2
5: (20)

Compared to single laser beam processing, an array of

multiple laser shock waves can be obtained, and the laser

shock wave radius distribution on silicon wafer surfaces can

be estimated by Eq. (20).

Fig. 5 shows the SEM images of an array of flower-like

silicon structures fabricated by four-beam laser interference

lithography with the single laser fluence of 354 mJ/cm2 (Fig.

5(a)), 495 mJ/cm2 (Fig. 5(b)) and 637 mJ/cm2 (Fig. 5(c)), and

the pulse repetition rate of 10 Hz, the laser wavelength of

1064 nm, and the pulse duration of 7–9 ns. Figs. 5(a)–5(c)

show the laser plasma processes with the splashed flower-

like silicon structures around each of silicon holes.

In the case that the laser fluence was 354 mJ/cm2, an

array of flower-like silicon structures on the beam irradiation

region was observed on the silicon wafer surface, as shown

in Fig. 5(a). Fig. 6 shows the diameter sizes of holes with

error bars obtained from different values of laser fluence.

The error bars were the average of 10 samples. The average

diameter size of the obtained flowers was approximately

6.5 lm, and each of flowers consists of the silicon hole and

many irradiated particles which are homogeneous around the

silicon hole. The average diameter size of the holes was

about 2.7 lm and that of the particles around the silicon

holes was about from 300 nm to 800 nm. When the laser flu-

ence was 495 mJ/cm2, an array of large flower-like silicon

structures was observed, as shown in Fig. 5(b). The average

diameter size of flowers was increased to about 7.5 lm, that

of the holes was increased to about 3.8 lm, and the particles

were distributed around the hole on the silicon wafer surface.

When the laser fluence was 637 mJ/cm2, the diameter size of

the flowers became larger, as shown in Fig. 5(c). The aver-

age diameter size of flowers was about 7.9 lm, and almost

all the particles were connected to the center of the flower.

The holes became larger on the silicon wafer surface, and

the average diameter size was about 4.5 lm. Fig. 5 indicates

that different values of laser fluence can produce different

shapes of flower-like silicon structures. The formation pro-

cess can be provided by the condition of melting, gasifica-

tion, and ionization of silicon.20 Thus, the particles have

splashed around each of silicon holes in the experiment.

Figs. 7–9 show the results obtained from the repetition

rate of 10 Hz and the laser pulses of 30, 100, and 300. Each

laser fluence for all the samples was 637 mJ/cm2. The differ-

ent numbers of laser pulses affect the modifications of silicon

surfaces and the evolution processes of structures in laser in-

terference lithography. The images present the laser ablation

processes, and the physical processes can be described by

Eqs. (9)–(16).

In the case that the laser exposures were 30, an array of

holes in the beam irradiation center were observed on the sil-

icon wafer surface, as shown in Figs. 7(a) and 7(b). The av-

erage depth and diameter size of holes were about 5.5 lm

and 5.8 lm. When the exposures were 100, an array of deep

holes was observed on the silicon wafer surface, as shown in

Figs. 8(a) and 8(b). The average depth of holes was about

8.9 lm, and the average diameter size of the holes was about

6.8 lm. When the exposures were 300, the depth of the holes

became deeper and the diameter size also became larger. An

array of cones was formed by the same conditions of four-

beam laser interference, as shown in Figs. 9(a) and 9(b). The

average depth of holes was about 13.8 lm, and the average

diameter size was changed to 7.8 lm. An array of holes was

not evident and replaced by an array of cones on the silicon

wafer surface due to that the laser interference fluence had

reached to the threshold value of silicon wafer. Thus, the sur-

rounding materials of silicon microholes were etched and

formed the array of cones on the silicon wafer surface. The

FIG. 5. SEM images of the flower-like

silicon structures fabricated by four-

beam laser interference lithography.

(a) The single laser fluence of 354 mJ/

cm2, (b) the single laser fluence of

495 mJ/cm2, and (c) the single laser

fluence of 637 mJ/cm2.

FIG. 6. Diameter sizes of holes with error bars to the average size obtained

from different values of laser fluence.

FIG. 7. (a) SEM image (0�) and (b) SEM image (45�) of the pattern centers

of the structures fabricated on the silicon wafer surface by four-beam laser

interference lithography with 30 laser pulses.
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theoretical diameter size on silicon wafer surfaces can be

estimated by Eqs. (15) and (16) in the laser ablation process.

Figs. 7–9 were the SEM images obtained in the beam irradia-

tion center, and the theoretical diameter size was accordingly

calculated. The theoretical diameters were obtained as

3.8 lm, 5.3 lm, and 9.1 lm.

Figs. 7–9 show the evolution process of the structures

fabricated by four-beam laser interference on the silicon wa-

fer surface. The process was due to the increase in the expo-

sure pulses. It means that the laser energy accumulation is

the result of the increase in laser impact on the silicon wafer

surface. The increases in the depth and the diameter of the

holes are due to that the four-beam laser interference inten-

sity is higher than the silicon material threshold, as shown in

Figs. 2, 10, and 11. Figs. 10 and 11 show that different

energy accumulation of pulses can meet different demands

of material modification thresholds for different shapes of

features. Thus, different laser pulses can also affect the mor-

phology of laser interference structures on the silicon wafer

surface. Fig. 12 shows theoretical and experimental results

for the comparison of their radius sizes with laser pulses.

In order to measure the reflectance, a Xenon-lamp, a

spectrograph, and an integrating sphere with a detector were

used. Fig. 13 shows that the reflectance of the pattern fabri-

cated on the silicon wafer surface (blue curve) and the solar-

weighted reflectance (SWR) is about 6.1% in the wavelength

range from 380 nm to 780 nm. The laser fluence was 637 mJ/

cm2 with 300 laser pulses generated by four-beam laser

FIG. 8. (a) SEM image (0�) and (b) SEM image (45�) of the pattern centers

of the structures fabricated on the silicon wafer surface by four-beam laser

interference lithography with 100 laser pulses.

FIG. 9. (a) SEM image (0�) and (b) SEM image (45�) of the pattern centers

of the structures fabricated on the silicon wafer surface by four-beam laser

interference lithography with 300 laser pulses.

FIG. 10. (a) The computer simulation of intensity distribution of four-beam

laser interference, the incident angle was 5.5�, the azimuthal angles were 0�,
90�, 180�, and 270�, and the polarization angles were 0�, 90�, 0�, and 90�

and (b) the schematic profile of a single positive peak dot intensity distribu-

tion after the effect of four-beam interference with the laser pulses of 30,

100, and 300.

FIG. 11. (a) The computer simulation of intensity distribution of four-beam

laser interference, the incident angle was 5.5�, the azimuthal angles were 0�,
90�, 180�, and 270�, and the polarizers were 0�, 90�, 0�, and 90� and (b) the

schematic profile of a single negative peak dot intensity distribution after the

effect of four-beam interference with the laser pulses of 30, 100, and 300.

FIG. 12. Theoretical and experimental results for the comparison of their ra-

dius sizes with laser pulses.

FIG. 13. The reflectance of the four-beam laser interference patterned sili-

con surface (blue curve), the monocrystalline silicon solar cell surface (black

curve), and polished silicon surface (red curve).
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interference. For comparison, the reflectance of monocrystal-

line silicon solar cell surface (black curve in Fig. 13) and

polished silicon surface (red curve in Fig. 13) were also

measured and the SWRs were 8.9% and 43.8%, respectively.

Thus, one of the applications corresponding to the patterns

fabricated by four-beam laser interference is the antireflec-

tion surface of solar cells, and it is important to understand

the effects of laser fluence on silicon modification for the

fabrication of well-defined surface structures in a four-beam

laser interference process.

Compared with the focused single laser beam process-

ing, four-beam laser interference lithography has the advan-

tages of high peak fluences, high resolution, re-configurable

patterns (feature sizes and shapes), and the creation of pro-

gram controlled structures over large areas for the fabrication

of periodic structures on various materials.

V. CONCLUSIONS

In this work, four-beam laser interference was used to

pattern single crystal silicon wafers for the fabrication of sur-

face structures, and the number of laser pulses was applied

to the process in air. By controlling the parameters of laser

irradiation, different shapes of silicon structures were

obtained. The results were achieved with the single laser flu-

ence of 354 mJ/cm2, 495 mJ/cm2, and 637 mJ/cm2, the pulse

repetition rate of 10 Hz, the laser exposure pulse of 30, 100,

and 300, the laser wavelength of 1064 nm, and the pulse du-

ration of 7–9 ns. The equations of heat flow and radiation

effects of laser plasma of interfering patterns in a four-beam

laser interference distribution were proposed to describe

their impacts on silicon wafer surfaces. With the different

laser fluence values of 354 mJ/cm2, 495 mJ/cm2, and 637

mJ/cm2, several physical processes such as the formation of

flower-like holes, dots, and cones were observed. The results

indicate that the laser fluence has to be properly selected for

the fabrication of well-defined surface structures in a four-

beam laser interference lithography process.
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