456 research outputs found

    Heterogeneity in structurally arrested hard spheres

    Get PDF
    When cooled or compressed sufficiently rapidly, a liquid vitrifies into a glassy amorphous state. Vitrification in a dense liquid is associated with jamming of the particles. For hard spheres, the density and degree of order in the final structure depend on the compression rate: simple intuition suggests, and previous computer simulation demonstrates, that slower compression results in states that are both denser and more ordered. In this work, we use the Lubachevsky-Stillinger algorithm to generate a sequence of structurally arrested hard-sphere states by varying the compression rate. We find that while the degree of order, as measured by both bond-orientation and translation order parameters, increases monotonically with decreasing compression rate, the density of the arrested state first increases, then decreases, then increases again, as the compression rate decreases, showing a minimum at an intermediate compression rate. Examination of the distribution of the local order parameters and the distribution of the root-mean-square fluctuation of the particle positions, as well as direct visual inspection of the arrested structures, reveal that they are structurally heterogeneous, consisting of disordered, amorphous regions and locally ordered crystal-like domains. In particular, the low-density arrested states correspond with many interconnected small crystal clusters that form a polycrystalline network interspersed in an amorphous background, suggesting that jamming by the domains may be an important mechanism for these states

    Withaferin A promotes proliferation and migration of brain endothelial cells

    Get PDF
    Purpose: To investigate the effect of withaferin A (WFA) on the proliferation and migration of brain endothelial cells.Methods: BALB-5023 mouse microvascular cells were treated with a range of withaferin A (WFA) concentrations from 10 to 100 ng/mL. Dojindo’s CCK-8 cell proliferation kit was used for the analysis of cell proliferation. Transwell cell culture inserts were used to determine the migration potential of WFAtreated endothelial cells. Absorbance was measured at 450 nm on an enzyme-linked immunosorbent(ELISA) reader.Results: The results revealed a significant increase in the proliferation and migration of endothelial cells following treatment with a low concentration (30 ng/mL) of WFA compared with the higher concentration (> 10 ng/mL). The effect was further  enhanced when WFA was used in combination with soluble Fas ligand (sFasL). Autocrine signaling of vascular endothelial growth factor (VEGF) by endothelial cellswas significantly increased following treatment with WFA or in combination with  sFasL. WFA increased the expression of Fas on endothelial cells, suggesting the involvement of sFasL in the proliferation and migration of brain endothelial cells.Conclusion: Thus, WFA promotes the proliferation and migration of endothelial cells through increase in the expression of Fas and secretion of VEGF.Keywords: Endothelial cells, Vascular endothelial growth factor, Microvascular, Vascular disease, Withaferin

    Entanglement in spin-1/2 dimerized Heisenberg systems

    Full text link
    We study entanglement in dimerized Heisenberg systems. In particular, we give exact results of ground-state pairwise entanglement for the four-qubit model by identifying a Z_2 symmetry. Although the entanglements cannot identify the critical point of the system, the mean entanglement of nearest-neighbor qubits really does, namely, it reaches a maximum at the critical point.Comment: Four pages, three figures, accepted in Communications in Theoretical Physic

    Experimental observation of magnetic bobbers for a new concept of magnetic solid-state memory

    Full text link
    The use of chiral skyrmions, which are nanoscale vortex-like spin textures, as movable data bit carriers forms the basis of a recently proposed concept for magnetic solid-state memory. In this concept, skyrmions are considered to be unique localized spin textures, which are used to encode data through the quantization of different distances between identical skyrmions on a guiding nanostripe. However, the conservation of distances between highly mobile and interacting skyrmions is difficult to implement in practice. Here, we report the direct observation of another type of theoretically-predicted localized magnetic state, which is referred to as a chiral bobber (ChB), using quantitative off-axis electron holography. We show that ChBs can coexist together with skyrmions. Our results suggest a novel approach for data encoding, whereby a stream of binary data representing a sequence of ones and zeros can be encoded via a sequence of skyrmions and bobbers. The need to maintain defined distances between data bit carriers is then not required. The proposed concept of data encoding promises to expedite the realization of a new generation of magnetic solid-state memory
    corecore