44 research outputs found

    Soil CO2 and N2O emissions and microbial abundances altered by temperature rise and nitrogen addition in active-layer soils of permafrost peatland

    Get PDF
    Changes in soil CO2 and N2O emissions due to climate change and nitrogen input will result in increased levels of atmospheric CO2 and N2O, thereby feeding back into Earth’s climate. Understanding the responses of soil carbon and nitrogen emissions mediated by microbe from permafrost peatland to temperature rising is important for modeling the regional carbon and nitrogen balance. This study conducted a laboratory incubation experiment at 15 and 20°C to observe the impact of increasing temperature on soil CO2 and N2O emissions and soil microbial abundances in permafrost peatland. An NH4NO3 solution was added to soil at a concentration of 50 mg N kg−1 to investigate the effect of nitrogen addition. The results indicated that elevated temperature, available nitrogen, and their combined effects significantly increased CO2 and N2O emissions in permafrost peatland. However, the temperature sensitivities of soil CO2 and N2O emissions were not affected by nitrogen addition. Warming significantly increased the abundances of methanogens, methanotrophs, and nirK-type denitrifiers, and the contents of soil dissolved organic carbon (DOC) and ammonia nitrogen, whereas nirS-type denitrifiers, β-1,4-glucosidase (βG), cellobiohydrolase (CBH), and acid phosphatase (AP) activities significantly decreased. Nitrogen addition significantly increased soil nirS-type denitrifiers abundances, β-1,4-N- acetylglucosaminidase (NAG) activities, and ammonia nitrogen and nitrate nitrogen contents, but significantly reduced bacterial, methanogen abundances, CBH, and AP activities. A rising temperature and nitrogen addition had synergistic effects on soil fungal and methanotroph abundances, NAG activities, and DOC and DON contents. Soil CO2 emissions showed a significantly positive correlation with soil fungal abundances, NAG activities, and ammonia nitrogen and nitrate nitrogen contents. Soil N2O emissions showed positive correlations with soil fungal, methanotroph, and nirK-type denitrifiers abundances, and DOC, ammonia nitrogen, and nitrate contents. These results demonstrate the importance of soil microbes, labile carbon, and nitrogen for regulating soil carbon and nitrogen emissions. The results of this study can assist simulating the effects of global climate change on carbon and nitrogen cycling in permafrost peatlands

    Recommendation of RILEM TC 246-TDC : test methods to determine durability of concrete under combined environmental actions and mechanical load

    Get PDF
    The combination of environmental actions and mechanical load has obvious synergetic effects on the durability of concrete. But these effects have been widely neglected so far. For a realistic service life prediction the effect of an applied mechanical load on chloride penetration has been taken into consideration as a first and important step in RILEM TC 246-TDC since 2011. This recommendation focuses on the test method to determine the effect of applied compressive stress and tensile stress on chloride diffusion. It includes detailed experimental procedure to receive consistent results of chloride profile and the apparent chloride ion diffusion coefficient of concrete under compressive and tensile stress

    Test methods to determine durability of concrete under combined environmental actions and mechanical load: final report of RILEM TC 246-TDC

    Get PDF
    At present several methods are available to predict the durability of reinforced concrete structures. In most cases, one dominant deterioration process such as carbonation or chloride penetration is taken into consideration. Experimental results as well as observations in practice show that this is not a realistic and certainly not a conservative approach. In order to test more realistically, RILEM TC 246-TDC, founded in 2011, has developed a method to determine the durability of concrete exposed to the combined action of chloride penetration and mechanical load. In this report, a test method is presented which allows determination of realistic diffusion coefficients for chloride ions in concrete under compressive or tensile stress. Comparative test results from five different laboratories showed that the combination of mechanical and environmental loads may be much more severe than a single environmental load without mechanical loading. Modelling and probabilistic analysis also showed that the obvious synergetic effects cannot be neglected in realistic service life prediction

    A New PKD1 Mutation Discovered in a Chinese Family with Autosomal Polycystic Kidney Disease

    No full text
    Background/Aims: Autosomal-dominant polycystic kidney disease (ADPKD), a heterogeneous genetic disorder characterized by massive kidney enlargement and progressive chronic kidney disease, is due to abnormal proliferation of renal tubular epithelium. ADPKD is known to be caused by mutations in PKD1 and PKD2 genes. Methods: In the present study, the mutation analysis of PKD genes was performed in a new Chinese family with ADPKD using Long-Range (LR) PCR sequencing and targeted next-generation sequencing (targeted DNA-HiSeq). Results: A unique 28 bp deletion (c.12605_12632del28) in exon 46 of the PKD1 gene was identified in two affected family members by LR PCR method, but not in any unaffected relatives or unrelated controls. Higher accuracy and less missing detection presented in LR PCR method compared with targeted DNA-HiSeq. This mutation c.12605_12632del28 (p.Arg4202ProextX146) resulted in a delayed termination of amino acid code, and was highly speculated pathogenic in this ADPKD family. Moreover, this newly identified frame-shift change was compared to the PKD gene database, but no similar mutation was yet reported. Conclusion: A novel frame-shift mutation, c. 12605_12632del28, in the PKD1 gene was found in a Chinese ADPKD family. All evidence available suggested that it might be the mutation responsible for the disease in that family
    corecore