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Changes in soil CO2 and N2O emissions due to climate change and nitrogen 

input will result in increased levels of atmospheric CO2 and N2O, thereby 

feeding back into Earth’s climate. Understanding the responses of soil carbon 

and nitrogen emissions mediated by microbe from permafrost peatland 

to temperature rising is important for modeling the regional carbon and 

nitrogen balance. This study conducted a laboratory incubation experiment 

at 15 and 20°C to observe the impact of increasing temperature on soil CO2 

and N2O emissions and soil microbial abundances in permafrost peatland. 

An NH4NO3 solution was added to soil at a concentration of 50 mg N kg−1 to 

investigate the effect of nitrogen addition. The results indicated that elevated 

temperature, available nitrogen, and their combined effects significantly 

increased CO2 and N2O emissions in permafrost peatland. However, the 

temperature sensitivities of soil CO2 and N2O emissions were not affected 

by nitrogen addition. Warming significantly increased the abundances of 

methanogens, methanotrophs, and nirK-type denitrifiers, and the contents 

of soil dissolved organic carbon (DOC) and ammonia nitrogen, whereas 

nirS-type denitrifiers, β-1,4-glucosidase (βG), cellobiohydrolase (CBH), and 

acid phosphatase (AP) activities significantly decreased. Nitrogen addition 

significantly increased soil nirS-type denitrifiers abundances, β-1,4-N- 

acetylglucosaminidase (NAG) activities, and ammonia nitrogen and 

nitrate nitrogen contents, but significantly reduced bacterial, methanogen 

abundances, CBH, and AP activities. A rising temperature and nitrogen 

addition had synergistic effects on soil fungal and methanotroph abundances, 

NAG activities, and DOC and DON contents. Soil CO2 emissions showed a 

significantly positive correlation with soil fungal abundances, NAG activities, 

and ammonia nitrogen and nitrate nitrogen contents. Soil N2O emissions 

showed positive correlations with soil fungal, methanotroph, and nirK-type 

denitrifiers abundances, and DOC, ammonia nitrogen, and nitrate contents. 

These results demonstrate the importance of soil microbes, labile carbon, 

and nitrogen for regulating soil carbon and nitrogen emissions. The results 
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of this study can assist simulating the effects of global climate change on 

carbon and nitrogen cycling in permafrost peatlands.

KEYWORDS

climate warming, nitrogen availability, soil microbial abundance, enzyme activity, 
boreal peatland

Introduction

Soil carbon dioxide (CO2) emissions represent the second 
largest carbon (C) flux in terrestrial ecosystems, accounting for 
70–90% of total ecosystem respiration (Schlesinger and Andrews, 
2000; Cascio et al., 2017). Losses of soil C to the atmosphere 
through soil heterotrophic respiration play an important role in 
regulating atmospheric CO2. These losses are predicted to 
increase due to climate change, resulting in a positive C-climate 
feedback loop (Yuan et  al., 2019; Dacal et  al., 2022). The 
availability of nitrogen (N) changes the source-sink dynamics of 
ecosystem C by changing the soil CO2 flux (Cascio et al., 2017). 
Soils also act as an important source-sink for nitrous oxide (N2O; 
Wu et al., 2013, 2015). Climate warming and the input of N could 
change mineralization of soil N and N2O emissions (Ma et al., 
2011). The increases in N2O emissions can cause changes in 
global warming potential, thus affecting the C sinks and CO2 
emissions (Muhammad et al., 2022). However, little is known 
about how increases in temperature and N inputs interact to 
regulate soil emissions of CO2 and N2O and their temperature 
sensitivity. An increased comprehension of the microbial 
mechanisms under warming and N addition impact emissions 
of CO2 and N2O is vital for accurately simulating the 
consequences of a changing global climate on the C and 
N balance.

Low temperatures and nutrient concentration limited soil 
microbial activities and soil organic matter (SOM) decomposition 
(Koyama et  al., 2014). An increase in temperature results in 
enhanced microbial growth and in the activation of the functional 
genes involved in C and N cycling (Xue et al., 2016; Wang et al., 
2019). These result in increased soil C decomposition and 
respiration (Han et al., 2013). However, a previous study noted a 
reduction in N2O production with increasing temperature, 
especially due to denitrification (Duan et al., 2019), whereas the 
abundances of amoA, nifH, and nirK increased (Jung et al., 2011; 
Han et  al., 2013). Warming could increase N limitation of 
microorganisms, which, in turn, could limit the impact of 
increased temperature on SOM mineralization. Previous studies 
found that N addition increased the abundances of C 
decomposition and N cycling genes (Jung et al., 2011; Wang et al., 
2019), leading to a stronger positive correlation between soil 
available N and microbial properties exposed to elevated 
temperature (Huang et al., 2022). Greater insight into the impacts 
of warming and the addition of N on soil microorganisms can 

assist in improving understanding of the reactions of soil C and N 
emissions to a global changing climate.

Soil enzymes catalyze breakdown of high molecular weight 
compounds, and play important functions in SOM degradation 
(Yao et al., 2015), measuring their activities can provide useful 
indicators of soil emissions of CO2 and N2O (Chen et al., 2017). 
Soil enzyme activities can be used to investigate microbial nutrient 
cycling due to their connections with active microbial biomass, 
including microbial responses to environmental changes, 
transformation rates, and the location of the most active biomass 
(Wang et al., 2015). Warming can result in changes in enzyme 
activities, leading to functional changes in soil ecosystem 
processes (Xu et  al., 2015). An improved understanding of 
decomposition and mechanisms of microbial enzyme production 
can assist in constraining long-term responses to warming (Sihi 
et al., 2016). Moreover, enzyme activities were applied as indicators 
of the impacts of N input within many recent experiments since 
they reflect the metabolic needs of soil microbial communities 
relative to available nutrients (Ochoa-Hueso et al., 2013). Nitrogen 
addition significantly stimulated activities of N- and phosphorus-
acquiring hydrolytic enzymes and depressed the activities of 
oxidative enzymes (Tu et al., 2014). Maslov and Maslova (2021) 
investigated the effect of increased N availability on changes in soil 
enzyme activities to better understand the internal mechanisms of 
soil C and N cycling processes. Improved comprehension of soil 
enzymes and their regulatory mechanisms is needed to enhance 
comprehension of the impacts of temperature and N availability 
on soil CO2 and N2O emissions.

Peatlands represent an important C pool on Earth, storing 
1,055 Gt of soil C, even though they only cover 3% of the land 
surface of the Earth (Nichols and Peteet, 2019). In particular, 
permafrost peatlands experience increased storage and emissions 
of C, and can act as key contributors to global warming. Permafrost 
thaw in northern peatlands results in alterations to ground 
thermal conditions, moisture, and chemistry, which, in turn, 
regulate microbial activities responsible for generating greenhouse 
gases (GHGs) from decomposing organic matter (Kirkwood et al., 
2021). Newly thawed permafrost in Western Canada is predicted 
to release 0.2 to 25% of stored C by 2,100 (Jin and Ma, 2021). An 
increase in annual temperature by 1°C was predicted to increase 
respiration by up to 60% in an experiment conducted in Arctic 
blanket peatland (Dorrepaal et al., 2009). Moreover, increases in 
N input affected N2O emissions in northern peatlands due to 
increased N availability and/or changing vegetation composition 
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(Le et al., 2020). Nitrogen addition could mitigate the positive 
effect of warming on methane fluxes in a coastal bog (Gong et al., 
2021). However, the synergistic environmental parameters 
regulating GHGs emissions in northern permafrost peatlands 
remain largely unknown (AminiTabrizi et al., 2020). Clarifying the 
synergistic effects of both climate warming and a rising nitrogen 
availability on permafrost emissions of CO2 and N2O can provide 
a reference for future studies on potential responses of C and N 
sequestration of high latitude peatlands to climate change.

Northeastern China contains the second largest expanse of 
permafrost in China, primarily known as Xing’an-Baikal 
permafrost. This permafrost area lies on the southeastern edges of 
the Eurasian cryolithozone and is thermally unstable and sensitive 
to external changes (Wei et al., 2011). By the 2010s, the area of 
Xing’an-Baikal permafrost in Northeast China had declined by 
40.6% compared with that in the 1960s (Li et  al., 2021). The 
present study aimed to understand the synergistic effects of both 
climate warming and rising N availability on soil emissions of CO2 
and N2O and its regulation mechanism in permafrost peatlands. 
An incubation experiment with temperature increase of 5°C and 
nitrogen addition of 50 mg N kg−1 was conducted in the Great 
Xing’an mountain peatland, Northeast China. The objectives of 
this research were to explore the response of CO2 and N2O 
emissions from permafrost peatland soil to warming and nitrogen 
addition, and clarify their driving mechanisms, which can help 
improve future predictions of responses of soil C and N cycling to 
climate warming.

Materials and methods

Site description and soil sampling

The study site of the present study is a typical permafrost 
peatland nearby the Tuqiang Forestry Bureau, Great Xing’an 
Mountain (52°44′N, 122°39′E), Heilongjiang Province, China. 
Average yearly temperature and average yearly precipitation are 
−3.9°C and 452 mm, respectively. The dominant species of plants 
are Vaccinium uliginosum L., Moench, Sphagnum spp., Ledum 
palustre L., Eriophorum vaginatum L., and Chamaedaphne 
calyculata L. The soil type of the study area according to the 
United States Department of Agriculture (USDA) classification 
system is Glacic Histoturbels (Soil Survey Staff, 2010). A soil 
sample of the active layer (0–20 cm) was obtained using a hand 
auger soil core sampler, which was filtered through a 2-mm sieve. 
The total C (TC) and total N (TN) of the soil sample before 
incubation experiments were 408.74 and 15.34 g kg−1, respectively, 
whereas soil moisture and pH were 77.18% and 5.49, respectively.

Laboratory incubation

Fresh soil samples (15 g according to completely dry soil) were 
placed in 500-ml glass flasks and preincubated at 15°C for 7 days. 

NH4NO3 solution (2 ml) was uniformly added to soil at a 
concentration of 50 mg N kg−1, with four replicates prepared. 
Deionized water (2 ml) was added to the control treatment. The 
flask lids were sealed with rubber septa to allow the analysis of 
rates of emissions of CO2 and N2O at 15 and 20°C (maximum 
monthly mean temperature in July of 18.4°C). These soils were 
incubated continuously for 18 days. Trapped air in the jars was 
removed for CO2 and N2O determination at intervals of 2 h, 1, 2, 
3, 5, 7, 9, 12, 15, and 18 days. Headspace gas in the jars was 
extracted using a 50-ml syringe with a three-way valve. The 
concentrations of CO2 and N2O were measured utilizing a gas 
chromatograph (Agilent 7890B, United States). Deionized water 
corresponding to the reduction in weight after each collection of 
gas was added. Soil samples were collected to determine soil 
microbial abundances, enzyme activities, and labile C and N 
contents at the end of incubation.

Soil microbial abundances analysis

Soil DNA was extracted from a 300-mg subsample using a 
FastDNA spin Kit (MPbio, Santa Ana, CA, United  States) in 
accordance with the manufacturer’s instructions. Bacterial 16S 
rRNA, fungal IST, and functional genes encoding mcrA, pmoA, 
nirS, and nirK were quantitatively evaluated via qPCR using an 
ABI StepOne instrument (Applied Biosystems, San Francisco, CA, 
United  States). Supplementary Table S1 lists the primers and 
amplification details used in the present study. The PCR mixture 
contained 10 ng soil DNA, 0.4 μl primers (10 μM), and 12.5-μl of 
SYBR Buffer (TaKaRa, Beijing, China) in a final volume of 25 μl. 
qPCR standard curves were created by purifying amplicon 
products of functional and phylogenetic markers using a cyclic 
purification kit (Omega Bio-Tek, United States), ligated to the 
pMD18-T (TaKaRa) vector, and transforming into Escherichia 
coli. A plasmid mini kit (Omega Bio-Tek, United  States) was 
utilized to remove the plasmids, with a standard local alignment 
searching tool used to identify specificity of plasmids. Standard 
curves were produced by plasmid serial dilution (Song et al., 2021).

Soil enzyme activities measurement

The potential activities of acid phosphatase (AP), β-1,4-
glucosidase (βG), cellobiohydrolase (CBH), and NAG were 
measured for absorbance using a microplate spectrophotometer. 
Aliquots (200 μl) of slurry (1 g fresh soil sample homogenized in 
125-ml 50-mM acetate buffer, pH 8) and 50-μl of substrate 
solution (200 μM) were placed into 96-well microplates. Every 
microplate had eight replicate wells per assay, as well as negative 
and positive controls for quench correction. The microplates were 
incubated in darkness at 20°C for 4 h. Excitation and emission 
fluorescence were identified at 365 and 450 nm, respectively using 
Cell Imaging Multi-Mode Reader (BioTek Cytation 5, 
United States).
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Soil carbon and nitrogen content 
measurement

Soil ammonia nitrogen (NH4
+-N), nitrate (NO3

−-N), and 
dissolved organic N (DON) were extracted through the addition 
of 2 M KCl at a 1:15 ratio, followed by 1 h of shaking at 150 rpm at 
a temperature of 20°C. DON concentrations of soil were calculated 
as the difference between total dissolved N and inorganic N. Soil 
dissolved organic C (DOC) contents were analyzed using a Multi 
N/C 2100 analyzer (Analytik Jena AG, Germany) after extracting 
fresh soil with a 2 M KCl solution. Soil TN contents were analyzed 
after digestion with sulfuric acid (H2SO4) and potassium sulfate 
(K2SO4), with cupric sulfate (CuSO4) used as a catalyst. The 
products of digestion were subsequently analyzed using an AA3 
continuous flow chemical analyzer (Seal Analytical, Germany). 
Quantification of soil moisture was by oven drying of fresh soil at 
105°C to a constant weight. The pH of soil was measured using a 
1:10 soil-deionized water slurry.

Data analyses

Statistical analyses were performed in the SPSS 24.0 package. 
Results are shown as the average ± standard error. A two-way 
analysis of variance (ANOVA) was performed to evaluate the 
interactions between increasing temperature and addition of N on 
soil emissions of CO2 and N2O, microbial abundances, enzyme 
activities, and contents of soil C and N. Linear regression analysis 
was conducted to explore relationships between the soil CO2 and 
N2O emissions and soil microbial abundances, enzyme activities, 
and soil C and N contents.

The temperature sensitivities (Q10) of soil CO2 and N2O 
emission rates per 10°C were calculated as follows:
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where T1 and T2 is the incubation temperatures for 15 and 
20°C, respectively. K1 and K2 is the CO2 (mg CO2-C kg−1 d−1) and 
N2O (μg N2O-N kg−1 d−1) emission rates at 15 and 20°C, respectively.

Results

Emissions of soil CO2 and N2O and their 
sensitivity to temperature

An increase in temperature significantly stimulated soil 
emissions of CO2 and N2O in the permafrost peatlands 
(Figures  1A,B). Soil CO2 and N2O emissions in the control 
increased by 53.57 and 45.50% at 20°C compared to that at 15°C, 
respectively. The addition of N resulted in increases in CO2 and 
N2O emissions by 52.34 and 54.53% at 20°C compared to that at 

15°C, respectively. The cumulative CO2 and N2O emissions were 
significantly higher under N addition than that in the control at 
15°C and 20°C (Figures 2A,B). The increase in cumulative N2O 
emissions after the addition of N was significantly higher than the 
increase in CO2. There were significant interactions between rising 
temperature and addition of N on both CO2 and N2O emissions 
(p < 0.05; Table 1). The sensitivities of soil CO2 and N2O emissions 
to temperature in the control were 2.37 and 2.36, respectively. The 
addition of N did not impact the Q10 values of CO2 and N2O 
emissions of 2.50 and 2.44, respectively (Figure 2C).

Soil microbial abundances

Among the microbial community, bacteria were the most 
abundant (6.08–14.52 × 1012 copies g−1 dry soil). At 20°C, bacterial 
abundances in the control and N addition treatment decreased to 
36.89 and 50.54% of that at 15°C (Figure  3A), respectively, 
indicating the preference of bacteria for lower temperature. At 
20°C, fungal abundances increased significantly by 60.73% in the 
N addition treatment (Figure 3B). N addition appeared to reduce 
the abundances of bacteria under both temperatures, whereas 
fungal abundances were significantly stimulated at 20°C. Increased 
temperature resulted in the proliferation of methanogen (mcrA) by 
28.04 and 31.46% in the control and N addition treatments, 
respectively (Figure 3C). However, N addition reduced methanogen 
abundances by 19.30 and 17.14% at 15 and 20°C, respectively. The 
abundances of methanotrophs (pmoA) significantly increased by 
28.49-, 14.31-, and 18.16-fold under a rising temperature, N 
addition, and both increased temperature and N addition, 
respectively (Figure 3D). Adding N at 15°C significantly increased 
the abundances of nirK-type denitrifiers by 21.89% (Figure 3E). An 
increase in temperature resulted in decreases in the abundances of 
the nirS-type denitrifiers by 25.59 and 22.75% in the control and N 
addition treatments, respectively (Figure 3F). The addition of N 
resulted in increases in the abundances of nirS-type denitrifiers by 
19.48 and 24.04% at 15 and 20°C, respectively. The increase in 
temperature and N addition had an interactive impact on the 
abundances of fungi and methanotrophs; however, there was no 
synergistic effect on bacterial, methanogen, and denitrifier 
abundances (p < 0.01; Table 2). There were significant relationships 
between the abundances of fungi and the contents of NH4

+-N, 
NO3

-_N, as well as emissions of CO2. This result indicated that fungi 
contributed to CO2 emissions and were affected by N 
concentrations. The significant correlations between N2O emissions 
and the abundances of fungi, methanotrophs, and nirK-type 
denitrifiers indicated the significant contribution of the microbial 
community to N2O emissions (p < 0.05; Figure 4).

Soil enzymes activities

The activities of the four soil enzymes responded significantly 
to a rising temperature and the addition of N (Figure 5). The 

https://doi.org/10.3389/fmicb.2022.1093487
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Song et al. 10.3389/fmicb.2022.1093487

Frontiers in Microbiology 05 frontiersin.org

C-cycling-related activities of βG and CBH decreased by 22.63 and 
22.46% with a rising in temperature in the control, whereas they 
decreased by 12.40 and 46.03% in the N addition treatment, 
respectively (Figures 5A,B). The rise in temperature resulted in an 

increase in soil NAG activities by 11.83 and 48.57% in the control 
and N addition treatments, respectively (Figure 5C). Significant 
interactive effects were observed between the rising temperature 
and addition of N on soil NAG activities (p < 0.01; Table 2). NAG 

A

B

FIGURE 1

Effects of temperature rising and nitrogen addition on soil CO2 (A) and N2O (B) emissions in permafrost peatland. CK, control; NA, add 50 mg N kg−1 
soil.

A B C

FIGURE 2

Effects of temperature rising and nitrogen addition on soil total CO2 (A) and N2O (B) release and their temperature sensitivity (Q10) (C) in permafrost 
peatland. CK, control; NA, add 50 mg N kg−1 soil. Different lowercase letters in the figure indicate significant differences in the means between 
different treatments.
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activities showed significant positive correlations with soil 
emissions of CO2 and contents of NO3

−-N and NH4
+-N (p < 0.05; 

Figure 4). Soil AP activities decreased with a rising temperature 
and the addition of N, with the highest and lowest activities of 

2,089.23 and 1,730.22 nmol g−1 h−1 obtained at 15°C without N 
addition and 20°C with N addition, respectively (Figure  5D). 
There were no synergistic effects of the rising temperature and 
addition of N on soil βG, CBH, and AP activities (p > 0.05; Table 2).

TABLE 1 Two-way ANOVA of effects of temperature rising and nitrogen addition on soil CO2, N2O release, and soil carbon and nitrogen contents.

CO2 emission rate N2O emission rate DOC DON NH4
+-N NO3

−-N

Temperature rising 49.824** 23.030** 8.890* 0.190 65.101** 6.160*

Nitrogen addition 6.427* 476.718** 0.003 13.075** 324.349** 11.814**

Temperature 

rising × Nitrogen addition

0.217* 21.961** 4.935* 31.132** 2.469 1.985

DOC, dissolved organic carbon; DON, dissolved organic nitrogen. *P < 0.05; **P < 0.01.

A B

C D

E F

FIGURE 3

Effects of temperature rising and nitrogen addition on soil bacterial (A), fungal (B), mcrA (C), pmoA (D), nirK (E), and nirS (F) abundances in 
permafrost peatland. CK, control; NA, add 50 mg N kg−1 soil.
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Soil labile carbon and nitrogen contents

An increase in temperature increased DOC contents in 
the permafrost peatlands from 531.05 to 628.25 mg kg−1 
in the control treatment (Figure  6A). However, the 
increase in temperature did not result in a significant change in 
soil DOC contents under the N addition treatment. N addition 
had a significantly negative impact on DON contents at 15°C, 
with DON decreasing from 169.80 to 116.80 mg kg−1, whereas soil 
DON was not significantly affected at 20°C (Figure 6B). NH4

+-N 
in soil ranged from 35.70 to 62.25 mg kg−1. Both a rise in 
temperature and the addition of N resulted in increased contents 
of soil NH4

+-N (Figure 6C). The contents of soil NO3
−-N under 

N addition (19.73 mg kg−1) were significantly higher than 
that in the control (14.96 mg kg−1) at 20°C (Figure  6D). 

The increase in temperature and N addition had 
significant interactive impacts on soil DOC and DON contents 
(p < 0.05; Table 1), whereas the effects on NO3

−-N and NH4
+-N 

were not significant. The soil emissions of CO2 and N2O showed 
significant positive correlations with contents of soil NH4

+-N and 
NO3

−-N, whereas N2O emissions were positively correlated with 
DOC contents (p < 0.05; Figure 4).

Discussion

Effect of soil microbial abundances on 
emissions of soil CO2 and N2O

The rise in temperature and addition of N stimulated 
emissions of soil CO2 and N2O. Moreover, the rise in temperature 

TABLE 2 Two-way ANOVA of the effects of nitrogen addition and temperature rising on soil microbial abundances and enzyme activities.

Bacteria Fungi mcrA pmoA nirK nirS βG CBH NAG AP

Temperature rising 241.018** 45.530** 9.914** 39.356** 30.183** 25.749** 8.811* 23.166** 1.936 20.320**

Nitrogen addition 51.150** 20.357** 5.907* 0.597 1.564 12.909** 3.625 42.317** 67.208** 13.070**

Temperature rising × Nitrogen addition 1.308 41.716** 0.024 22.850** 3.897 0.024 1.226 0.630 19.659** 0.027

βG, β-1,4-glucosidase; CBH, cellobiohydrolase; NAG, β-1,4-N-acetylglucosaminidase; AP, acid phosphatase. *P < 0.05; **P < 0.01.

FIGURE 4

Pearson’s correlation analysis of soil CO2 and N2O emissions, carbon and nitrogen contents, microbial abundances, and enzyme activities. βG, 
β-1,4-glucosidase; CBH, cellobiohydrolase; NAG, β-1,4-N-acetylglucosaminidase; AP, acid phosphatase; DOC, dissolved organic carbon; DON, 
dissolved organic nitrogen; NH4

+-N, ammonium nitrogen; NO3
—N, nitrate nitrogen. * indicates significant p < 0.05; ** indicates significant p < 0.01.
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and addition of N interacted within their effect on soil emissions 
of CO2 and N2O. However, the results of the current study 
demonstrated a strong negative effect of rise in temperature and 
the addition of N on the abundances of bacteria. This result 
indicated that bacteria in permafrost peatlands were adapted to a 
low temperature and N-limited environment. In line with our 
results, warming reduced 37% of bacterial abundance and 
microbial metabolic capacity in the deep organic layer of an 
Alaska tundra (Wu et  al., 2022). Our results showed that the 
combined effects of temperature rising and N addition 
significantly increased fungal abundances and there were 
significantly positively correlations between fungal abundances 
and the emissions of CO2 and N2O, suggesting that there were 
differences in sensitivity of different microbial communities to 
environmental changes and fungi communities played a vital part 
in the variations of CO2 and N2O emissions at higher temperature 
and under the addition of N. Consistent with the outcomes of the 
current study, Xu et al. (2017) determined that fungal tolerance to 
high temperatures played a significant part in N2O emissions.

The results of the present study showed that methanotrophs 
were more sensitive to a changing temperature and the addition 

of N compared to other microbial communities. The higher 
abundances of nirK-type denitrifiers at 20°C compared to at 
15°C observed in the present study were consistent with results 
of previous studies in which the abundances of nirK genes were 
promoted by higher temperatures (Jung et al., 2011; Cui et al., 
2016). Declines the abundances of nirS-type denitrifiers were 
observed at 20°C compared to those at 15°C. This result 
demonstrated that nirS-type denitrifiers were better adapted to 
low temperature conditions. The significant positive correlations 
between the abundances of nirK-type denitrifiers and NH4

+-N 
contents and N2O emissions observed in the present study 
indicated that the increase in emissions of N2O could 
be primarily attributed to the denitrification pathway mediated 
by nirK denitrifiers. Jung et al. (2011) similarly observed an 
increase in nirK genes abundances under both warming and the 
addition of N. The nirK denitrifiers mentioned above are 
bacterial nirK, fungal nirK also have clear relevance for N2O-
producing, future understanding the abundance and 
distribution of denitrifying fungi may provide new insight into 
soil N2O emissions under various environmental settings (Chen 
et al., 2016).

A B

C D

FIGURE 5

Effects of temperature rising and nitrogen addition on soil enzyme activities in permafrost peatland. CK, control; NA, add 50 mg N kg−1 soil. βG, 
β-1,4-glucosidase (A); CBH, cellobiohydrolase (B); NAG, β-1,4-N-acetylglucosaminidase (C); AP, acid phosphatase (D).

https://doi.org/10.3389/fmicb.2022.1093487
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Song et al. 10.3389/fmicb.2022.1093487

Frontiers in Microbiology 09 frontiersin.org

Impacts of soil enzyme activities on 
emissions of soil CO2 and N2O

Soil enzymes play an important role in the mineralization of 
soil C and N. Therefore, an improved comprehension of the 
reaction of soil enzyme activities to increasing temperature and 
the availability of N is crucial for understanding the mechanisms 
under which emissions of soil CO2 and N2O occur. An increased 
temperature can alter the nutrient acquisition strategies of 
microbial communities. This is achieved by changing extracellular 
enzyme activities through the priming of decomposition of SOM, 
which leads to increased emissions of CO2 from peatlands 
(AminiTabrizi et al., 2022). NAG participates in N conversion and 
plays a significant part in the decomposition of nitrogenous 
substances in soil as it facilitates the degradation of chitin (Liu 
et  al., 2019). Chitin is a major source of soil organic N. The 
addition of N may affect the decomposition of chitin and 
peptidoglycan, which, in turn, accelerates the activities of NAG 

(Liu et al., 2019). Consistent with the outcomes of the present 
study, Chen et al. (2018) and Liu et al. (2019) determined that N 
addition significantly increased the activities of NAG by 5.5% and 
56.40–204.78%, respectively. The increase in the activities of NAG 
can be attributed to soil acidification induced by the addition of 
N. A decrease in pH was shown to positively affect soil NAG 
activities (Chen et al., 2018). pH is a key driver for the turnover of 
organic matter in cold soil, regulatory role of pH needs 
consideration in the future studies (Leifeld et al., 2013). Although 
the rise in temperature decreased NAG activities in the control 
treatment, the increase in NAG activities in the N addition 
treatment indicated that within the combined effect of an elevated 
temperature and addition of N, the latter had the dominant effect 
on soil enzyme activities.

The rise in temperature inhibited the activities of soil βG, 
CBH, and AP. This result could be attributed to the decrease in 
enzyme activities possibly being related to a decrease in substrate 
(e.g., microbial biomass) availability at elevated temperatures. 

A B

C D

FIGURE 6

Effects of temperature rising and nitrogen addition on soil dissolved organic carbon (A), dissolved organic nitrogen (B), NH4
+-N (C), and NO3

−-N 
(D) contents in peatland. CK, control; NA, add 50 mg N kg−1 soil; DOC, dissolved organic carbon; DON, dissolved organic nitrogen; NH4

+-N, 
ammonium nitrogen; NO3

—N, nitrate nitrogen. Different lowercase letters in the figure indicate significant differences in the means between 
different treatments.
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Wang J. Y. et  al. (2020) determined that enzyme activities 
reduced with increasing incubation time, suggesting that the 
responses of enzymes reflected changes in the availability of 
substrate due to warming. The rate of enzyme production has 
been shown to decrease as substrate is exhausted. The outcomes 
of the current study illustrated that the warming stimulation of 
soil respiration readily depleted hydrolysable substrates during 
incubation without inputs of C sources. Therefore, decreases in 
the active pool due to warming can result in microbial C 
starvation (Metcalfe, 2017; Wang J. Y. et al., 2020). In addition, 
bacterial conversion of NH4

+-N to NO2
−-N in the first step of 

nitrification can further acidify soils through the release of H+ 
into soil solution. Accelerated acidification, in turn, is an 
important factor inhibiting soil microbial enzyme activities to 
acute nutrient amendment (Fatemi et al., 2016). Previous studies 
have also suggested that a decline in soil enzyme activities was 
attributable to their more rapid inactivation due to warming can 
help explain attenuation of the warming impact on 
mineralization of soil C (Alvarez et al., 2018). Changes in redox 
conditions driven by temperature can result in abiotic 
destabilization of Fe-organic matter (phenol) complexes. This is 
a peatland decomposition pathway that was previously 
underestimated and can result in increased production of CO2 
and the accumulation of polyphenol-like compounds that could 
further inhibit the activities of extracellular enzymes 
(AminiTabrizi et al., 2022).

Effect of substrate availability on 
emissions of soil CO2 and N2O

The emissions of soil CO2 and N2O were related to the 
concentrations of NO3

−-N and NH4
+-N. Also, soil emissions of 

N2O were related to the concentrations of DOC. Similarly, 
correlations between the soil CO2 release and NO3

−-N and 
NH4

+-N concentrations were revealed by Zhang et al. (2018) in 
mountain forest and meadow ecosystems. These results 
indicated that higher substrate availability enhanced the 
activities of soil microbes, which, in turn, resulted in increased 
emissions of CO2 and N2O. Soil DOC is composed of low 
molecular weight organic compounds and drives the growth 
and activity of microbes by acting as an energy source and a 
substrate (Wang C. M. et al., 2020). The results of the present 
study showed an increase in DOC with increasing incubation 
temperature in the control. An elevated temperature accelerated 
microbial processes and increased C availability in the control, 
resulting in higher heterotrophic respiration rates and 
increased release of CO2. However, soil DOC tended to 
decrease with the addition of N at a higher incubation 
temperature, indicating that N addition may limit available 
C. Warming significantly increased inorganic N (NH4

+-N and 
NO3

—N; Table 1) due to higher mineralization and nitrification 
of TN. The above results are consistent with the earlier study of 
Yuan et al. (2018), and suggest that warming increases soil N 

mineralization. Increase in N mineralization resulted in an 
increase in soil available N contents with increasing incubation 
temperature. Higher temperatures have been shown to 
accelerate the denitrification and nitrification processes (Inclan 
et  al., 2012; Zhang et  al., 2016). These processes are major 
pathways of soil emissions or production of N2O (Zhang et al., 
2018; Li et  al., 2019). N2O emissions due to nitrification 
accounted for 60–80% of total emissions (Zhang et al., 2020). 
Therefore, the increased availability of C and N in the soil 
substrate stimulated N2O emissions by accelerating N 
transformation under warming.

In addition to soil temperature, the addition of N had 
profound influences on the emissions of CO2 and N2O. N 
addition significantly elevated NH4

+-N and NO3
−-N, alleviated 

microbial N limitation, and promoted soil CO2 and N2O 
emissions, thereby accelerating soil C and N cycling. Menyailoa 
et  al. (2014) similarly found an increase in heterotrophic 
activity by 20–30% after the addition of N. Increase in the 
availability of N often accelerates soil denitrification and 
nitrification processes and results in increased emissions of 
N-oxide (Davidson et al., 2000; Benanti et al., 2014). Especially, 
when C are available for microbial activity, N availability will 
have pronounced impacts on nitrification and denitrification 
(Lu et al., 2015). Consistent with the result of Guo et al. (2020), 
the results of the present study showed a positive correlation 
between DOC and N2O emissions. This result indicated that 
both labile C and available N concentrations were the dominant 
factors influencing the emissions of N2O. DOC is an important 
factor regulating denitrification and autotrophic and 
heterotrophic nitrification (Ferrarini et  al., 2017). DOC 
concentrations influence the emissions of greenhouse gasses by 
regulating microbial metabolism, whereas soil ammonium and 
nitrate do not have the same regulatory function (Chen et al., 
2020). Increased C availability enhances microbial activity, 
and, in turn, O2 consumption, which may lead to sub-aerobic 
microsites facilitating N2O emissions by denitrification and 
nitrifier denitrification (Ma et al., 2022). Consistent with the 
outcomes of the current study, Zhu et al. (2016) concluded that 
the sensitivity of soil respiration to temperature was not 
influenced by the addition of N, indicating that the availability 
of C substrate may be more important than that of N substrate.

Conclusion

This study showed that a rise in temperature and the 
addition of N promoted soil CO2 and N2O emissions. This 
result implies that future increases in temperature and 
availability of N will stimulate C and N cycling in the 
permafrost peatlands. The abundances of fungi were positively 
correlated with emissions of soil CO2 and N2O, suggesting that 
fungal communities may play a significant part in driving the 
exchange of C and N at the soil-atmosphere interface in 
permafrost peatlands. The abundances of the nirK-type 

https://doi.org/10.3389/fmicb.2022.1093487
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Song et al. 10.3389/fmicb.2022.1093487

Frontiers in Microbiology 11 frontiersin.org

denitrifiers were positively correlated with DOC and NH4
+-N 

contents, and emissions of N2O, suggesting that the 
denitrification process mediated by nirK-type denitrifiers and 
available substrate may play a significant part in emissions of 
N2O. The activities of soil NAG increased with the addition of 
N and a rise in temperature, and were positively correlated with 
soil CO2 emissions. This result indicated that the activities of 
soil NAG are more important than those of other enzymes for 
regulating CO2 emissions. The results of the current study 
improve understanding of how temperature and N availability 
regulate soil emissions of greenhouse gasses in permafrost 
peatlands. However, a laboratory study cannot completely 
reflect the actual response of greenhouse gasses to global 
warming, and future research should focus on how plants and 
their interactions with soil microbes regulate greenhouse gas 
emissions under field conditions.
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