9 research outputs found

    Seed Germination Responses to Seasonal Temperature and Drought Stress Are Species‐Specific but Not Related to Seed Size in a Desert Steppe: Implications for Effect of Climate Change on Community Structure

    Get PDF
    Investigating how seed germination of multiple species in an ecosystem responds to environmental conditions is crucial for understanding the mechanisms for community structure and biodiversity maintenance. However, knowledge of seed germination response of species to environmental conditions is still scarce at the community level. We hypothesized that responses of seed germination to environmental conditions differ among species at the community level, and that germination response is not correlated with seed size. To test this hypothesis, we determined the response of seed germination of 20 common species in the Siziwang Desert Steppe, China, to seasonal temperature regimes (representing April, May, June, and July) and drought stress (0, −0.003, −0.027, −0.155, and −0.87 MPa). Seed germination percentage increased with increasing temperature regime, but Allium ramosum, Allium tenuissimum, Artemisia annua, Artemisia mongolica, Artemisia scoparia, Artemisia sieversiana, Bassia dasyphylla, Kochia prastrata, and Neopallasia pectinata germinated to \u3e60% in the lowest temperature regime (April). Germination decreased with increasing water stress, but Allium ramosum, Artemisia annua, Artemisia scoparia, Bassia dasyphylla, Heteropappus altaicus, Kochia prastrata, Neopallasia pectinata, and Potentilla tanacetifolia germinated to near 60% at −0.87 MPa. Among these eight species, germination of six was tolerant to both temperature and water stress. Mean germination percentage in the four temperature regimes and the five water potentials was not significantly correlated with seed mass or seed area, which were highly correlated. Our results suggest that the species‐specific germination responses to environmental conditions are important in structuring the desert steppe community and have implications for predicting community structure under climate change. Thus, the predicted warmer and dryer climate will favor germination of drought‐tolerant species, resulting in altered proportions of germinants of different species and subsequently change in community composition of the desert steppe

    The role of seed appendage in improving the adaptation of a species in definite seasons: a case study of Atriplex centralasiatica

    No full text
    Background: As a common accompanying dispersal structure, specialized seed appendages play a critical role in the successful germination and dispersal of many plants, and are regarded as an adaptation character for plants survival in diverse environments. However, little is known about how the appendages modulate the linkage between germination and environmental factors. Here, we tested the responses of germination to seasonal environmental signals (temperature and humidity) via seed appendages using Atriplex centralasiatica, which is widely distributed in salt marshlands with dry-cold winter in northern China. Three types of heteromorphic diaspores that differ in morphology of persistent bracteole and dormancy levels are produced in an individual plant of A. centralasiatica. Results: Except for the nondormant diaspore (type A, with a brown seed enclosed in a persistent bracteole), bracteoles regulated inner seed dormancy of the other two dormant diaspore types, i.e., type B (flat diaspore with a black inner seed) and type C (globular diaspore with a black inner seed). For types B and C, germination of bracteole-free seeds was higher than that of intact diaspores, and was limited severely when incubated in the bracteole-soaking solution. Dormancy was released at a low temperature (< 10 degrees C) and suitable humidity (5-15%) condition. Oppositely, high temperature and unfit humidity induced secondary dormancy via inhibitors released by bracteoles. Type C with deeper dormancy needed more stringent conditions for dormancy release and was easier for dormancy inducement than type B. The germination windows were broadened and the time needed for dormancy release decreased after the bracteole flushing for the two dormant types in the field condition. Conclusions: Bracteoles determine the germination adaptation by bridging seeds and environmental signals and promising seedlings establishment only in proper seasons, which may also restrict species geographical distribution and shift species distributing ranges under the global climate change scenarios

    RETRACTION: The role of seed appendage in improving the adaptation of a species in definite seasons: a case study ofAtriplex centralasiatica (Retraction of Vol 19, art no 538, 2019)

    No full text
    An amendment to this paper has been published and can be accessed via the original article

    Dynamics of the diaspore and germination stages of the life history of an annual diaspore-trimorphic species in a temperate salt desert

    No full text
    Main conclusion Individuals of the annual halophyte Atriplex centralasiatica produce three kinds of diaspores that differ in dispersal, dormancy/germination response and type of seed bank formed, which likely is a bet-hedging strategy in the rainfall-unpredictable environment on the semi-arid, saline Ordos Plateau in Inner Mongolia, China. Seasonal fluctuations in environmental conditions provide germination cues for the establishment of seedlings at the right time and place to ensure plant survival and population regeneration. Diaspore heteromorphism is a phenomenon in which diaspores with stark qualitative differences in morphology and ecology are produced by the same maternal plant. Germination responses and dispersal times of the annual halophyte Atriplex centralasiatica were examined to determine the role of diaspore heteromorphism in its adaptation to salt desert conditions. A. centralasiatica is a tumbleweed that produces three types of diaspores that differ in morphology and ecophysiology. The relative potential dispersal ability and intensity of dormancy of the three diaspore types was type A (fan-shaped diaspores with yellow fruits) 90.0% remained in the soil seedbank 2 years after dispersal, respectively. The dormancy, dispersal and salt tolerance of type B diaspores were intermediate between those of A and C. Type A exhibited low dispersal-nondormancy, type B exhibited intermediate dispersal-intermediate dormancy and type C exhibited high dispersal ability-high dormancy. In the unpredictable salt desert habitat, the functional differences in germination and dispersal of the three diaspores act as a bet-hedging mechanism and ensure population establishment in different years by spreading germination over time and space

    Arbuscular mycorrhizal symbiosis and achene mucilage have independent functions in seedling growth of a desert shrub

    No full text
    Arbuscular mycorrhizal (AM) symbiosis can play a role in improving seedling establishment in deserts, and it has been suggested that achene mucilage facilitates seedling establishment in sandy deserts and that mucilage biodegradation products may improve seedling growth. We aimed to determine if AM symbiosis interacts with achene mucilage in regulating seedling growth in sand dunes. Up to 20 AM fungal taxa colonized Artemisia sphaerocephala roots in the field, and mycorrhizal frequency and colonization intensity exhibited seasonal dynamics. In the greenhouse, total biomass of AM fungal-colonized plants decreased, whereas the root/shoot ratio increased. AM symbiosis resulted in increased concentrations of nutrients and chlorophyll and decreased concentrations of salicylic acid (SA) and abscisic acid (ABA). Achene mucilage had a weaker effect on biomass and on nutrient, chlorophyll, and phytohormone concentration than did AM symbiosis. We suggest that AM symbiosis and achene mucilage act independently in enhancing seedling establishment in sandy deserts

    Great granny still ruling from the grave: Phenotypical response of plant performance and seed functional traits to salt stress affects multiple generations of a halophyte

    No full text
    Environmental changes, for example, in rainfall and land use, lead to changes in the environment experienced by subsequent generations of plant species. Environmental conditions of maternal plants can influence the fitness and phenotypes of subsequent generations via non-genetic mechanisms: transgenerational plasticity (TGP). However, relevant empirical evidence remains scarce and ambiguous. What are the adaptive consequences of TGP for plants in the face of environmental change? For how many generations does the TGP effect remain? We tried to answer these questions by measuring life-history traits and reproductive characteristics of progeny plants of the diaspore-heteromorphic annual halophyte Atriplex centralasiatica in a 3-year TGP experiment covering F0, F1 and F2 and partly F3. Plants from diaspore types A (low dispersal and high germination ability) and C (high dispersal and low germination ability) were grown in favourable versus stressful salinities over three generations in a fully factorial design. Transgenerational plasticity of plants grown in favourable versus stressful salinities decreased from F2 → F1 → F0. Compared to the favourable condition, the stressful condition decreased the length of the vegetative period, increased the length of reproductive time, reproductive allocation and progeny diaspore size. Salinity tolerance and phenotypic plasticity were higher in plants from diaspore A than in those from diaspore C. In the stressful condition, plants produced less plant biomass, larger diaspores, a higher proportion of diaspore C, but lower proportion of diaspore A. Production of the proportion of diaspore C increased with increase in number of previous generations that experienced stress. The stress experience of the great-great grandmother (F0) continued into the lower A:C ratio of the F3 diaspores. Synthesis. Our findings provide evidence for the ‘escape strategy’ of A. centralasiatica: TGP could spread the risk of environmental adversity by delaying seed germination temporally and broadening seed dispersal spatially, thus allowing plants to cope with environmental heterogeneity. Specifically, the trade-off in reproductive allocation between diaspores A and C enables plants to develop divergent strategies. New research should reveal the extent to which wide-ranging taxa can benefit from TGP and whether even (great)-great grandmother might be the starting point of TGP

    Seed mucilage interacts with soil microbial community and physiochemical processes to affect seedling emergence on desert sand dunes

    No full text
    Seedling emergence is a critical stage in the establishment of desert plants. Soil microbes participate in plant growth and development, but information is lacking with regard to the role of microbes on seedling emergence. We applied the biocides (captan and streptomycin) to assess how seed mucilage interacts with soil microbial community and physiochemical processes to affect seedling emergence of Artemisia sphaerocephala on the desert sand dune. Fungal and bacterial community composition and diversity and fungal-bacterial interactions were changed by both captan and streptomycin. Mucilage increased soil enzyme activities and fungal-bacterial interactions. Highest seedling emergence occurred under streptomycin and mucilage treatment. Members of the phyla Firmicutes and Glomeromycota were the keystone species that improved A. sphaerocephala seedling emergence, by increasing resistance of young seedlings to drought and pathogen. Seed mucilage directly improved seedling emergence and indirectly interacted with the soil microbial community through strengthening fungal-bacterial interactions and providing favourable environment for soil enzymes to affect seedling emergence. Our study provides a comprehensive understanding of the regulatory mechanisms by which soil microbial community and seed mucilage interactively promote successful establishment of populations of desert plants on the barren and stressful sand dune
    corecore