1,513 research outputs found

    Biomass accumulation and nutrient uptake of cereals at different growth stages in the parkland region of Saskatchewan

    Get PDF
    Non-Peer ReviewedField experiments were conducted with spring wheat (cv. AC Barrie - CWRS and cv. AC Taber - CPS), barley (cv. AC Oxbow - malt and cv. AC Lacombe - feed) and oats (cv. CDC Boyer or CDC Pacer) in 1998 and 1999 at Melfort, Saskatchewan, Canada, to determine biomass accumulation and nutrient uptake in cereal crops at different growth stages, and their relationship. All cereal crops followed a similar pattern of biomass and nutrient accumulation, which increased at early growth stages, reached at maximum and then decreased at late growth stages. Cereal crops usually reached their maximum biomass at late milk to full ripening stages (72-90 days after emergence), although some cultivars had a several days difference between the two years. Maximum biomass accumulation rate was 164-204 kg ha-1d-1 for wheat, 211-308 kg ha-1d-1 for barley and 185-217g ha-1d-1 for oats. Maximum uptake of nutrients usually occurred at beginning of flower to late milk (63-82 days after emergence) in both years. Maximum accumulation rate of N, P, K and S was 2.0-4.7, 0.3-0.4, 2.4-5.1 and 0.3-0.5 kg ha-1d-1 for wheat, 2.4-5.2, 0.3-0.5, 3.1-7.6 and 0.4-0.8 kg ha-1d-1 for barley, and 2.7-3.6, 0.3, 4.2-4.7 and 0.4-0.5 kg ha-1d-1 for oats, respectively. Both seed yield and nutrient uptake were lower in 1999 than in 1998, due to differences in weather conditions in the growing season in the two years. In summary, maximum nutrient accumulation rate occurred earlier than maximum biomass accumulation rate, and maximum nutrient uptake occurred earlier than maximum biomass. This indicates that in order to get high seed yields, there should be sufficient supply of nutrients to ensure higher nutrient uptake rate at tillering to stem elongation growth stage first, then a higher biomass accumulation rate at early to late boot growth stage, a greater nutrient uptake at beginning of flower to late milk growth stage, and a greater biomass at late milk to full ripening growth stage. This also suggests that sufficient supply of nutrients from soil/fertilizers at early growth stages is of great importance for high-yield crop production systems

    Формування субрегіонів як напрям підвищення конкурентоспроможності та інвестиційної активності території

    Get PDF
    Характерною особливістю регіону є виконання ним не тільки економічних, а й соціальних функцій. Саме тут криється принципова відмінність між різними ланками відтворювального процесу. Кінцева мета відтворювального процесу регіону – матеріальний добробут населення, покращення навколишнього середовища, створення нормальних умов для праці й відпочинку, можливостей духовного розвитку особи і т. п

    Effect of Na doping on flux pinning of YBa1.9Na0.1Cu3O7-d

    Full text link
    We have prepared Na-doped YBa2Cu3Oy (YBa1.9Na0.1Cu3Oy +40mol%Y211) (YBNCO) and Na-free YBa2Cu3Oy (YBCO) samples by the Melt-Textured Growth (MTG) method to study the effect of doped Na ion on flux pinning. The ac susceptibility curves (acs) as well as the hysteresis loops were measured for the samples. Then the effective pinning energy (U(T,Hdc,J)), irreversibility line (Hirr(T)) and critical current density (jc(Hdc)) were determined, where T, Hdc and J are temperature, dc magnetic field and current density, respectively. We found that, with Na doping, the Hirr(T) line shifted to lower temperature while the Jc(Hdc) and U(T,Hdc,J) became smaller. It indicates that the Na ions play a negative role in the flux pinning of YBCO. The appearance of the second peak in the Jc(Hdc) curves and the enhancement of anisotropy in YBNCO further support this finding.Comment: 7 pages, 7figures. Submited to Physica.

    PSO-based Parameter Estimation of Nonlinear Kinetic Models for β-Mannanase Fermentation

    Get PDF
    Particle swarm optimization (PSO), as a novel evolutionary algorithm involved in social interaction for global space search, was firstly used in kinetic parameter estimation. Based on three developed nonlinear kinetic equations for bacterial cell growth, total sugar utilization and β-mannanase production by Bacillus licheniformis under the support of a batch fermentation process, various PSO algorithms as well as gene algorithms (GA) were developed to estimate kinetic parameters. The performance comparison among these algorithms indicates the improved PSO (Trelea 1) is most suitable for kinetic parameter estimation of β-mannanase fermentation. In order to find the physical-chemical-meanings of kinetic parameters from many optimized results, multiobjective optimization with a normalized weight method was adopted. The 9 desired parameters in equations were obtained by the Trelea 1 type PSO with two batches fermentation data, and the results predicted by the models were also in good agreement with the experimental observations
    corecore