46,576 research outputs found

    Mathematical modelling and experimental validation of electrostatic sensors for rotational speed measurement

    Get PDF
    Recent research has demonstrated that electrostatic sensors can be applied to the measurement of rotational speed with excellent repeatability and accuracy under a range of conditions. However, the sensing mechanism and fundamental characteristics of the electrostatic sensors are still largely unknown and hence the design of the sensors is not optimised for rotational speed measurement. This paper presents the mathematical modelling of strip electrostatic sensors for rotational speed measurement and associated experimental studies for the validation of the modelling results. In the modelling, an ideal point charge on the surface of the rotating object is regarded as an impulse input to the sensing system. The fundamental characteristics of the sensor, including spatial sensitivity, spatial filtering length and signal bandwidth, are quantified from the developed model. The effects of the geometric dimensions of the electrode, the distance between the electrode and the rotor surface and the rotational speed being measured on the performance of the sensor are analyzed. A close agreement between the modelling results and experimental measurements has been observed under a range of conditions. Optimal design of the electrostatic sensor for a given rotor size is suggested and discussed in accordance with the modelling and experimental results

    Controlled quantum teleportation and secure direct communication

    Full text link
    We present a controlled quantum teleportation protocol. In the protocol, quantum information of an unknown state of a 2-level particle is faithfully transmitted from a sender (Alice) to a remote receiver (Bob) via an initially shared triplet of entangled particles under the control of the supervisor Charlie. The distributed entangled particles shared by Alice, Bob and Charlie function as a quantum information channel for faithful transmission. We also propose a controlled and secure direct communication scheme by means of this teleportation. After insuring the security of the quantum channel, Alice encodes the secret message directly on a sequence of particle states and transmits them to Bob supervised by Charlie using this controlled quantum teleportation. Bob can read out the encoded message directly by the measurement on his qubit. In this scheme, the controlled quantum teleportation transmits Alice's message without revealing any information to a potential eavesdropper. Because there is not a transmission of the qubit carrying the secret message between Alice and Bob in the public channel, it is completely secure for controlled and direct secret communication if perfect quantum channel is used. The feature of this scheme is that the communication between two sides depends on the agreement of the third side.Comment: 4 page

    A More Precise Extraction of |V_{cb}| in HQEFT of QCD

    Full text link
    The more precise extraction for the CKM matrix element |V_{cb}| in the heavy quark effective field theory (HQEFT) of QCD is studied from both exclusive and inclusive semileptonic B decays. The values of relevant nonperturbative parameters up to order 1/m^2_Q are estimated consistently in HQEFT of QCD. Using the most recent experimental data for B decay rates, |V_{cb}| is updated to be |V_{cb}| = 0.0395 \pm 0.0011_{exp} \pm 0.0019_{th} from B\to D^{\ast} l \nu decay and |V_{cb}| = 0.0434 \pm 0.0041_{exp} \pm 0.0020_{th} from B\to D l \nu decay as well as |V_{cb}| = 0.0394 \pm 0.0010_{exp} \pm 0.0014_{th} from inclusive B\to X_c l \nu decay.Comment: 7 pages, revtex, 4 figure

    Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications

    Get PDF
    The South China Sea (SCS) experienced three episodes of seafloor spreading and left three fossil spreading centers presently located at 18°N, 17°N and 15.5°N. Spreading ceased at these three locations during magnetic anomaly 10, 8, and 5c, respectively. Daimao Seamount (16.6. Ma) was formed 10. my after the cessation of the 17°N spreading center. Volcaniclastic rocks and shallow-water carbonate facies near the summit of Daimao Seamount provide key information on the seamount's geologic history. New major and trace element and Sr-Nd-Pb isotopic compositions of basaltic breccia clasts in the volcaniclastics suggest that Daimao and other SCS seamounts have typical ocean island basalt-like composition and possess a 'Dupal' isotopic signature. Our new analyses, combined with available data, indicate that the basaltic foundation of Daimao Seamount was formed through subaqueous explosive volcanic eruptions at 16.6. Ma. The seamount subsided rapidly (>. 0.12. mm/y) at first, allowing the deposition of shallow-water, coral-bearing carbonates around its summit and, then, at a slower rate (<. 0.12. mm/y). We propose that the parental magmas of SCS seamount lavas originated from the Hainan mantle plume. In contrast, lavas from contemporaneous seamounts in other marginal basins in the western Pacific are subduction-related
    • …
    corecore