13,368 research outputs found

    Assessing carbon-based anodes for lithium-ion batteries: A universal description of charge-transfer binding

    Full text link
    Many key performance characteristics of carbon-based lithium-ion battery anodes are largely determined by the strength of binding between lithium (Li) and sp2 carbon (C), which can vary significantly with subtle changes in substrate structure, chemistry, and morphology. Here, we use density functional theory calculations to investigate the interactions of Li with a wide variety of sp2 C substrates, including pristine, defective, and strained graphene; planar C clusters; nanotubes; C edges; and multilayer stacks. In almost all cases, we find a universal linear relation between the Li-C binding energy and the work required to fill previously unoccupied electronic states within the substrate. This suggests that Li capacity is predominantly determined by two key factors -- namely, intrinsic quantum capacitance limitations and the absolute placement of the Fermi level. This simple descriptor allows for straightforward prediction of the Li-C binding energy and related battery characteristics in candidate C materials based solely on the substrate electronic structure. It further suggests specific guidelines for designing more effective C-based anodes. The method should be broadly applicable to charge-transfer adsorption on planar substrates, and provides a phenomenological connection to established principles in supercapacitor and catalyst design.Comment: accepted by Physical Review Letter

    Fermionic and Bosonic Stabilizing Effects for Type I and Type II Dimension Bubbles

    Full text link
    We consider two types of "dimension bubbles", which are viewed as 4d nontopological solitons that emerge from a 5d theory with a compact extra dimension. The size of the extra dimension varies rapidly within the domain wall of the soliton. We consider the cases of type I (II) bubbles where the size of the extra dimension inside the bubble is much larger (smaller) than outside. Type I bubbles with thin domain walls can be stabilized by the entrapment of various particle modes whose masses become much smaller inside than outside the bubble. This is demonstrated here for the cases of scalar bosons, fermions, and massive vector bosons, including both Kaluza-Klein zero modes and Kaluza-Klein excitation modes. Type II bubbles expel massive particle modes but both types can be stabilized by photons. Plasma filled bubbles containing a variety of massless or nearly massless radiation modes may exist as long-lived metastable states. Furthermore, in contrast to the case with a "gravitational bag", the metric for a fluid-filled dimension bubble does not exhibit a naked singularity at the bubble's center.Comment: 17 pages, no figs; to appear in Phys.Rev.

    Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media.

    Get PDF
    Hydrogen evolution reaction is an important process in electrochemical energy technologies. Herein, ruthenium and nitrogen codoped carbon nanowires are prepared as effective hydrogen evolution catalysts. The catalytic performance is markedly better than that of commercial platinum catalyst, with an overpotential of only -12 mV to reach the current density of 10 mV cm-2 in 1 M KOH and -47 mV in 0.1 M KOH. Comparisons with control experiments suggest that the remarkable activity is mainly ascribed to individual ruthenium atoms embedded within the carbon matrix, with minimal contributions from ruthenium nanoparticles. Consistent results are obtained in first-principles calculations, where RuCxNy moieties are found to show a much lower hydrogen binding energy than ruthenium nanoparticles, and a lower kinetic barrier for water dissociation than platinum. Among these, RuC2N2 stands out as the most active catalytic center, where both ruthenium and adjacent carbon atoms are the possible active sites

    Influence of Calcium and Magnesium on Ethylene Production by Apple Tissue Slices

    Full text link

    Hydrogen effects on nanomechanical behavior of additively manufactured 316L stainless steels

    Get PDF
    Additive manufacturing (AM) has received considerable attention in recent years due to its ability to produce complex engineering components with reduced cost and waste, which simply cannot be made with conventional manufacturing processes. It has been reported that AM 316L austenitic stainless steel (SS) has excellent mechanical properties and possibly even breaks the strength-ductility trade-off. For practical industrial application, it is necessary to investigate the AM steel\u27s resistance to hydrogen embrittlement which is unavoidable in most strucral applications. In this work, we explore the hydrogen effects on nanomechanical responses of AM 316L SS (such as hardness, strain rate sensitivity, activation volume). The obtained results will be compared with those of conventional 316L SS and discussed in terms of hydrogen effect on plastic deformation and microstructure. Please click Additional Files below to see the full abstract

    Formation of Millisecond Pulsars from Accretion Induced Collapse and Constraints on Pulsar Gamma Ray Burst Models

    Get PDF
    We study accretion induced collapse of magnetized white dwarfs as an origin of millisecond pulsars. We apply magnetized accretion disk models to the pre-collapse accreting magnetic white dwarfs and calculate the white dwarf spin evolution. If the pulsar magnetic field results solely from the flux-frozen fossil white dwarf field, a typical millisecond pulsar is born with a field strength 10111012G\sim 10^{11}-10^{12}G. The uncertainty in the field strength is mainly due to the uncertain physical parameters of the magnetized accretion disk models. A simple correlation between the pulsar spin Ω\Omega_* and the magnetic field BB_*, (Ω/104s1)(B/1011G)4/5(\Omega_*/10^4s^{-1})\sim (B_{*}/10^{11}G)^{-4/5}, is derived for a typical accretion rate \sim 5\times 10^{-8}M_{\sun}/yr. This correlation remains valid for a wide pre-collapse physical conditions unless the white dwarf spin and the binary orbit are synchronized prior to accretion induced collapse. We critically examine the possibility of spin-orbit synchronization in close binary systems. Using idealized homogeneous ellipsoid models, we compute the electromagnetic and gravitational wave emission from the millisecond pulsars and find that electromagnetic dipole emission remains nearly constant while millisecond pulsars may spin up rather than spin down as a result of gravitational wave emission. We also derive the physical conditions under which electromagnetic emission from millisecond pulsars formed by accretion induced collapse can be a source of cosmological gamma-ray bursts. We find that relativistic beaming of gamma-ray emission and precession of gamma-ray emitting jets are required unless the dipole magnetic field strengths are >1015>10^{15}G; such strong dipole fields are in excess of those allowed from the accretion induced collapse formation process except in spin-orbit synchronization.Comment: 36 pages, AASLATEX, 4 ps figures, Ap

    Statistical-Mechanical Measure of Stochastic Spiking Coherence in A Population of Inhibitory Subthreshold Neurons

    Full text link
    By varying the noise intensity, we study stochastic spiking coherence (i.e., collective coherence between noise-induced neural spikings) in an inhibitory population of subthreshold neurons (which cannot fire spontaneously without noise). This stochastic spiking coherence may be well visualized in the raster plot of neural spikes. For a coherent case, partially-occupied "stripes" (composed of spikes and indicating collective coherence) are formed in the raster plot. This partial occupation occurs due to "stochastic spike skipping" which is well shown in the multi-peaked interspike interval histogram. The main purpose of our work is to quantitatively measure the degree of stochastic spiking coherence seen in the raster plot. We introduce a new spike-based coherence measure MsM_s by considering the occupation pattern and the pacing pattern of spikes in the stripes. In particular, the pacing degree between spikes is determined in a statistical-mechanical way by quantifying the average contribution of (microscopic) individual spikes to the (macroscopic) ensemble-averaged global potential. This "statistical-mechanical" measure MsM_s is in contrast to the conventional measures such as the "thermodynamic" order parameter (which concerns the time-averaged fluctuations of the macroscopic global potential), the "microscopic" correlation-based measure (based on the cross-correlation between the microscopic individual potentials), and the measures of precise spike timing (based on the peri-stimulus time histogram). In terms of MsM_s, we quantitatively characterize the stochastic spiking coherence, and find that MsM_s reflects the degree of collective spiking coherence seen in the raster plot very well. Hence, the "statistical-mechanical" spike-based measure MsM_s may be used usefully to quantify the degree of stochastic spiking coherence in a statistical-mechanical way.Comment: 16 pages, 5 figures, to appear in the J. Comput. Neurosc

    Pulse Shape Discrimination Techniques in Scintillating CsI(Tl) Crystals

    Full text link
    There are recent interests with CsI(Tl) scintillating crystals for Dark Matter experiments. The key merit is the capability to differentiate nuclear recoil (nr) signatures from the background β/γ\beta / \gamma-events due to ambient radioactivity on the basis of their different pulse shapes. One of the major experimental challenges is to perform such pulse shape analysis in the statistics-limited domain where the light output is close to the detection threshold. Using data derived from measurements with low energy γ\gamma's and nuclear recoils due to neutron elastic scatterings, it was verified that the pulse shapes between β/γ\beta / \gamma-events are different. Several methods of pulse shape discrimination are studied, and their relative merits are compared. Full digitization of the pulse shapes is crucial to achieve good discrimination. Advanced software techniques with mean time, neural network and likelihood ratios give rise to satisfactory performance, and are superior to the conventional Double Charge method commonly applied at higher energies. Pulse shape discrimination becomes effective starting at a light yield of about 20 photo-electrons. This corresponds to a detection threshold of about 5 keV electron-equivalence energy, or 40-50 keV recoil kinetic energy, in realistic experiments.Comment: 20 pages, 7 figure
    corecore