84,368 research outputs found

    Linear magnetoresistance on the topological surface

    Full text link
    A positive, non-saturating and dominantly linear magnetoresistance is demonstrated to occur in the surface state of a topological insulator having a wavevector-linear energy dispersion together with a finite positive Zeeman energy splitting. This linear magnetoresistance shows up within quite wide magnetic-field range in a spatially homogenous system of high carrier density and low mobility in which the conduction electrons are in extended states and spread over many smeared Landau levels, and is robust against increasing temperature, in agreement with recent experimental findings in Bi2_2Se3_3 nanoribbons.Comment: 7 pages, 4 figure

    Galaxy alignment on large and small scales

    Full text link
    Galaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some extent of mis-alignment. The massive haloes have stronger alignment than haloes in filament which connect massive haloes. This is contrary to the naive expectation that cosmic filament is the cause of halo alignment.Comment: 4 pages, 3 figures, To appear in the proceedings of the IAU Symposium 308 "The Zeldovich Universe: Genesis and Growth of the Cosmic Web

    A Large-scale Distributed Video Parsing and Evaluation Platform

    Full text link
    Visual surveillance systems have become one of the largest data sources of Big Visual Data in real world. However, existing systems for video analysis still lack the ability to handle the problems of scalability, expansibility and error-prone, though great advances have been achieved in a number of visual recognition tasks and surveillance applications, e.g., pedestrian/vehicle detection, people/vehicle counting. Moreover, few algorithms explore the specific values/characteristics in large-scale surveillance videos. To address these problems in large-scale video analysis, we develop a scalable video parsing and evaluation platform through combining some advanced techniques for Big Data processing, including Spark Streaming, Kafka and Hadoop Distributed Filesystem (HDFS). Also, a Web User Interface is designed in the system, to collect users' degrees of satisfaction on the recognition tasks so as to evaluate the performance of the whole system. Furthermore, the highly extensible platform running on the long-term surveillance videos makes it possible to develop more intelligent incremental algorithms to enhance the performance of various visual recognition tasks.Comment: Accepted by Chinese Conference on Intelligent Visual Surveillance 201

    On Solving a Generalized Chinese Remainder Theorem in the Presence of Remainder Errors

    Full text link
    In estimating frequencies given that the signal waveforms are undersampled multiple times, Xia et. al. proposed to use a generalized version of Chinese remainder Theorem (CRT), where the moduli are M1,M2,⋯ ,MkM_1, M_2, \cdots, M_k which are not necessarily pairwise coprime. If the errors of the corrupted remainders are within \tau=\sds \max_{1\le i\le k} \min_{\stackrel{1\le j\le k}{j\neq i}} \frac{\gcd(M_i,M_j)}4, their schemes can be used to construct an approximation of the solution to the generalized CRT with an error smaller than τ\tau. Accurately finding the quotients is a critical ingredient in their approach. In this paper, we shall start with a faithful historical account of the generalized CRT. We then present two treatments of the problem of solving generalized CRT with erroneous remainders. The first treatment follows the route of Wang and Xia to find the quotients, but with a simplified process. The second treatment considers a simplified model of generalized CRT and takes a different approach by working on the corrupted remainders directly. This approach also reveals some useful information about the remainders by inspecting extreme values of the erroneous remainders modulo 4τ4\tau. Both of our treatments produce efficient algorithms with essentially optimal performance. Finally, this paper constructs a counterexample to prove the sharpness of the error bound τ\tau

    Characterisation of the transmissivity field of a fractured and karstic aquifer, Southern France

    Get PDF
    International audienceGeological and hydrological data collected at the Terrieu experimental site north of Montpellier, in a confined carbonate aquifer indicates that both fracture clusters and a major bedding plane form the main flow paths of this highly heterogeneous karst aquifer. However, characterising the geometry and spatial location of the main flow channels and estimating their flow properties remain difficult. These challenges can be addressed by solving an inverse problem using the available hydraulic head data recorded during a set of interference pumping tests.We first constructed a 2D equivalent porous medium model to represent the test site domain and then employed regular zoning parameterisation, on which the inverse modelling was performed. Because we aim to resolve the fine-scale characteristics of the transmissivity field, the problem undertaken is essentially a large-scale inverse model, i.e. the dimension of the unknown parameters is high. In order to deal with the high computational demands in such a large-scale inverse problem, a gradient-based, non-linear algorithm (SNOPT) was used to estimate the transmissivity field on the experimental site scale through the inversion of steady-state, hydraulic head measurements recorded at 22 boreholes during 8 sequential cross-hole pumping tests. We used the data from outcrops, borehole fracture measurements and interpretations of inter-well connectivities from interference test responses as initial models to trigger the inversion. Constraints for hydraulic conductivities, based on analytical interpretations of pumping tests, were also added to the inversion models. In addition, the efficiency of the adopted inverse algorithm enables us to increase dramatically the number of unknown parameters to investigate the influence of elementary discretisation on the reconstruction of the transmissivity fields in both synthetic and field studies.By following the above approach, transmissivity fields that produce similar hydrodynamic behaviours to the real head measurements were obtained. The inverted transmissivity fields show complex, spatial heterogeneities with highly conductive channels embedded in a low transmissivity matrix region. The spatial trend of the main flow channels is in a good agreement with that of the main fracture sets mapped on outcrops in the vicinity of the Terrieu site suggesting that the hydraulic anisotropy is consistent with the structural anisotropy. These results from the inverse modelling enable the main flow paths to be located and their hydrodynamic properties to be estimated

    Density Matrix Renormalization Group study on incommensurate quantum Frenkel-Kontorova model

    Full text link
    By using the density matrix renormalization group (DMRG) technique, the incommensurate quantum Frenkel-Kontorova model is investigated numerically. It is found that when the quantum fluctuation is strong enough, the \emph{g}-function featured by a saw-tooth map in the depinned state will show a different kind of behavior, similar to a standard map, but with reduced magnitude. The related position correlations are studied in details, which leads to a potentially interesting application to the recently well-explored phase transitions in cold atoms loaded in optical lattices.Comment: 11 figures, submitted to Phys. Rev.
    • …
    corecore