864 research outputs found

    Look, Listen and Learn - A Multimodal LSTM for Speaker Identification

    Full text link
    Speaker identification refers to the task of localizing the face of a person who has the same identity as the ongoing voice in a video. This task not only requires collective perception over both visual and auditory signals, the robustness to handle severe quality degradations and unconstrained content variations are also indispensable. In this paper, we describe a novel multimodal Long Short-Term Memory (LSTM) architecture which seamlessly unifies both visual and auditory modalities from the beginning of each sequence input. The key idea is to extend the conventional LSTM by not only sharing weights across time steps, but also sharing weights across modalities. We show that modeling the temporal dependency across face and voice can significantly improve the robustness to content quality degradations and variations. We also found that our multimodal LSTM is robustness to distractors, namely the non-speaking identities. We applied our multimodal LSTM to The Big Bang Theory dataset and showed that our system outperforms the state-of-the-art systems in speaker identification with lower false alarm rate and higher recognition accuracy.Comment: The 30th AAAI Conference on Artificial Intelligence (AAAI-16

    Genomic sequencing and analyses of Lymantria xylina multiple nucleopolyhedrovirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Outbreaks of the casuarina moth, <it>Lymantria xylina </it>Swinehoe (Lepidoptera: Lymantriidae), which is a very important forest pest in Taiwan, have occurred every five to 10 years. This moth has expanded its range of host plants to include more than 65 species of broadleaf trees. LyxyMNPV (<it>L. xylina </it>multiple nucleopolyhedrovirus) is highly virulent to the casuarina moth and has been investigated as a possible biopesticide for controlling this moth. LdMNPV-like virus has also been isolated from <it>Lymantria xylin</it>a larvae but LyxyMNPV was more virulent than LdMNPV-like virus both in NTU-LY and IPLB-LD-652Y cell lines. To better understand LyxyMNPV, the nucleotide sequence of the LyxyMNPV DNA genome was determined and analysed.</p> <p>Results</p> <p>The genome of LyxyMNPV consists of 156,344 bases, has a G+C content of 53.4% and contains 157 putative open reading frames (ORFs). The gene content and gene order of LyxyMNPV were similar to those of LdMNPV, with 151 ORFs identified as homologous to those reported in the LdMNPV genome. Two genes (Lyxy49 and Lyxy123) were homologous to other baculoviruses, and four unique LyxyMNPV ORFs (Lyxy11, Lyxy19, Lyxy130 and Lyxy131) were identified in the LyxyMNPV genome, including a <it>gag-like </it>gene that was not reported in baculoviruses. LdMNPV contains 23 ORFs that are absent in LyxyMNPV. Readily identifiable homologues of the gene <it>host range factor-1 </it>(<it>hrf-1</it>), which appears to be involved in the susceptibility of <it>L. dispar </it>to NPV infection, were not present in LyxyMNPV. Additionally, two putative <it>odv-e27 </it>homologues were identified in LyxyMNPV. The LyxyMNPV genome encoded 14 <it>bro </it>genes compared with 16 in LdMNPV, which occupied more than 8% of the LyxyMNPV genome. Thirteen homologous regions (<it>hr</it>s) were identified containing 48 repeated sequences composed of 30-bp imperfect palindromes. However, they differed in the relative positions, number of repeats and orientation in the genome compared to LdMNPV.</p> <p>Conclusion</p> <p>The gene parity plot analysis, percent identity of the gene homologues and a phylogenetic analysis suggested that LyxyMNPV is a Group II NPV that is most closely related to LdMNPV but with a highly distinct genomic organisation.</p

    TRPV1 Channel Contributes to the Behavioral Hypersensitivity in a Rat Model of Complex Regional Pain Syndrome Type 1

    Get PDF
    Complex regional pain syndrome type 1 (CRPS-I) is a debilitating pain condition that significantly affects life quality of patients. It remains a clinically challenging condition and the mechanisms of CRPS-I have not been fully elucidated. Here, we investigated the involvement of TRPV1, a non-selective cation channel important for integrating various painful stimuli, in an animal model of CRPS-I. A rat model of chronic post-ischemia pain (CPIP) was established to mimic CRPS-I. TRPV1 expression was significantly increased in hind paw tissue and small to medium-sized dorsal root ganglion (DRG) neurons of CPIP rats. CPIP rats showed increased TRPV1 current density and capsaicin responding rate in small-sized nociceptive DRG neurons. Local pharmacological blockage of TRPV1 with the specific antagonist AMG9810, at a dosage that does not produce hyperthermia or affect thermal perception or locomotor activity, effectively attenuated thermal and mechanical hypersensitivity in bilateral hind paws of CPIP rats and reduced the hyperexcitability of DRG neurons induced by CPIP. CPIP rats showed bilateral spinal astrocyte and microglia activations, which were significantly attenuated by AMG9810 treatment. These findings identified an important role of TRPV1 in mediating thermal and mechanical hypersensitivity in a CRPS-I animal model and further suggest local pharmacological blocking TRPV1 may represent an effective approach to ameliorate CRPS-I

    Cartilage tissue healing and regeneration based on biocompatible materials: a systematic review and bibliometric analysis from 1993 to 2022

    Get PDF
    Cartilage, a type of connective tissue, plays a crucial role in supporting and cushioning the body, and damages or diseases affecting cartilage may result in pain and impaired joint function. In this regard, biocompatible materials are used in cartilage tissue healing and regeneration as scaffolds for new tissue growth, barriers to prevent infection and reduce inflammation, and deliver drugs or growth factors to the injury site. In this article, we perform a comprehensive bibliometric analysis of literature on cartilage tissue healing and regeneration based on biocompatible materials, including an overview of current research, identifying the most influential articles and authors, discussing prevailing topics and trends in this field, and summarizing future research directions
    corecore