868 research outputs found

    Full Length Research Paper Curcumin induces cleavage of -catenin by activation of capases and downregulates the &#946-catenin/Tcf signaling pathway in HT-29 cells

    Get PDF
    β-Catenin/Tcf-4 signaling pathway plays important roles in colorectal tumorigenesis. RT-PCR, western blotting and immunoprecipitation were used to study the effects of curcumin on β-catenin/Tcf-4 signaling pathway in HT-29 cells. Treatment of curcumin could induce cleavage of β-catenin and the cleavage could be inhibited by caspase inhibitors. The association of β-catenin with Tcf-4 in nucleus could be inhibited by curcumin. The expression of c-myc and cyclinD1 was downregulated by curcumin, which could not be blocked by Z-DEVD-FMK. The results showed curcumin could induce thecleavage of β-catenin by activition of caspases and downregulate the activity of β-catenin/Tcf signaling pathway independent of the caspases in HT-29 cells

    Inhibition of bacterial adhesion to HT-29 cells by lipoteichoic acid extracted from Clostridium butyricum

    Get PDF
    The aim of this experiment was to study the effect of the lipoteichoic acid (LTA) extracted from Clostridium butyricum on the adhesion of C. butyricum and Escherichia coli to HT-29 human intestinal cells. The method of extraction of lipoteichoic acid form C. butyricum by TX114 was evaluated. The purification of the LTA by DEAE-cellulose 52 anion exchange chromatography was also investigated. In addition, the LTA was assayed for its inhibition of the adhesion of C. butyricum and E. coli to HT-29 cells and antimicrobial activity. Our results showed that LTA could be extracted by TX114 and purified by DEAE-cellulose 52 anion exchange chromatography and could inhibit the adhesion of C. butyricum and E. coli to HT-29 cells. This result also revealed that the LTA from C. butyricum could inhibit the adhesion of C. butyricum and E. coli to intestinal cells.Key words: Lipoteichoic acid, Clostridium butyricum, HT-29 cells, adhesion, Escherichia col

    Self-powered active lateral suspension for railway vehicles

    Get PDF
    This paper presents a design methodology for the development of self-powered active lateral secondary suspensions for rail vehicles. It firstly investigates the energy flows in the active lateral secondary suspensions and analyzes the conditions for self-powered control in detail. The impact of the controller design on both the ride quality and the energy consumption is then used to guide the design/specification of actuators and to define key actuator parameters in order to achieve both expected performance improvement and zero-energy consumption for the actuators. Furthermore, a control strategy for dealing with larger than expected energy consumptions by the active suspensions is proposed to eliminate excessive power requirements, but also to ensure the ride quality improvement in comparison to that of passive suspensions. Computer simulations are used to validate the control strategy for the self-powered active suspension

    Physical Layer Security in Large-Scale Random Multiple Access Wireless Sensor Networks: A Stochastic Geometry Approach

    Get PDF
    This paper investigates physical layer security for a large-scale WSN with random multiple access, where each fusion center in the network randomly schedules a number of sensors to upload their sensed data subject to the overhearing of randomly distributed eavesdroppers. We propose an uncoordinated random jamming scheme in which those unscheduled sensors send jamming signals with a certain probability to defeat the eavesdroppers. With the aid of stochastic geometry theory and order statistics, we derive analytical expressions for the connection outage probability and secrecy outage probability to characterize transmission reliability and secrecy, respectively. Based on the obtained analytical results, we formulate an optimization problem for maximizing the sum secrecy throughput subject to both reliability and secrecy constraints, considering a joint design of the wiretap code rates for each scheduled sensor and the jamming probability for the unscheduled sensors. We provide both optimal and low-complexity sub-optimal algorithms to tackle the above problem, and further reveal various properties on the optimal parameters which are useful to guide practical designs. In particular, we demonstrate that the proposed random jamming scheme is beneficial for improving the sum secrecy throughput, and the optimal jamming probability is the result of trade-off between secrecy and throughput. We also show that the throughput performance of the sub-optimal scheme approaches that of the optimal one when facing a stringent reliability constraint or a loose secrecy constraint

    Physical-layer Security of Uplink mmWave Transmissions in Cellular V2X Networks

    Get PDF
    In this paper, we investigate physical-layer security of the uplink millimeter wave communications for a cellular vehicle-to-everything (C-V2X) network comprised of a large number of base stations (BSs) and different categories of V2X nodes, including vehicles, pedestrians, and road side units. Considering the dynamic change and randomness of the topology of the C-V2X network, we model the roadways, the V2X nodes on each roadway, and the BSs by a Poisson line process, a 1D Poisson point process (PPP), and a 2D PPP, respectively. We propose two uplink association schemes for a typical vehicle, namely, the smallest-distance association (SDA) scheme and the largest-power association (LPA) scheme, and we establish a tractable analytical framework to comprehensively assess the security performance of the uplink transmission, by leveraging the stochastic geometry theory. Specifically, for each association scheme, we first obtain new expressions for the association probability of the typical vehicle, and then derive the overall connection outage probability and secrecy outage probability by calculating the Laplace transform of the aggregate interference power. Numerical results are presented to validate our theoretical analysis, and we also provide interesting insights into how the security performance is influenced by various system parameters, including the densities of V2X nodes and BSs. Moreover, we show that the LPA scheme outperforms the SDA scheme in terms of secrecy throughput

    Parallel fast fourier transform in SPMD style of cilk

    Full text link
    Copyright © 2019 Inderscience Enterprises Ltd. In this paper, we propose a parallel one-dimensional non-recursive fast Fourier transform (FFT) program based on conventional Cooley-Tukey’s algorithm written in C using Cilk in single program multiple data (SPMD) style. As a highly compact designed code, this code is compared with a highly tuned parallel recursive fast Fourier transform (FFT) using Cilk, which is included in Cilk package of version 5.4.6. Both algorithms are executed on multicore servers, and experimental results show that the performance of the SPMD style of Cilk fast Fourier transform (FFT) parallel code is highly competitive and promising
    • …
    corecore