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Abstract
In this paper, we consider the oscillations of numerical solutions for the nonlinear
delay differential equations in a hematopoiesis model. Using two θ -methods, namely
the linear θ -method and the one-leg θ -method, several conditions, under which the
numerical solutions oscillate, are obtained. Moreover, it is proved that every
non-oscillatory numerical solution tends to an equilibrium point of the original
system. Some numerical experiments are provided to support the theoretical results.
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1 Introduction
In recent years, there has beenmuch research activity concerning the oscillatory behavior
of solutions of difference equations [, ], differential equations with piecewise continuous
arguments (EPCA) [, ], dynamic equations [, ] and partial differential equations [, ].
Among these investigations, oscillations of solutions of delay differential equations (DDEs)
have also been the subject of many recent studies [–]. The strong interest in this study
is motivated by the fact that it has many useful applications in somemathematical models
such as biology, ecology, spread of some infectious diseases in humans and so on. Formore
information on this study, the reader can see [, ] and the references therein.
Relative to the investigation of the oscillations of the analytic solutions, much research

has been focused on the corresponding behavior of the numerical solutions for DDEs. In
[, ], oscillations of numerical solutions in θ -methods and Runge-Kutta methods for a
linear EPCA x′(t) + ax(t) + ax([t – ]) =  were considered, respectively. Wang et al. []
studied numerical oscillations of alternately advanced and retarded EPCA, the conditions
of oscillations for the θ -methods are obtained. To the best of our knowledge, until now
very few results dealingwith the oscillations of the numerical solutions for nonlinearDDEs
have been reported except for []. Different from [], in our paper, we consider another
nonlinear DDEs in a hematopoiesis model and get some new results.
In this paper, we consider the following equation:

x′(t) + px(t) –
qx(t)

r + xα(t – τ )
= , t ≥ , ()
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with the conditions

p,q, r, τ ∈ (,∞), α ∈N = {, , . . .}, q/p > r. ()

Equation () is one of the models proposed by Nazarenko [] to study the control of a
single population of cells. Here x(t) is the size of the population of cells, and cells are lost
at a rate p, and the function

F(u) =
qu

r + uα(t – τ )

is the flux function, which depends on the size of cells x(t) and x(t – τ ) at times t and
t – τ , respectively, and τ is the time of maturation. The model () has been recently inves-
tigated by several researchers. Kubiaczyk and Saker [] considered Equation () and gave
a sufficient condition for oscillations of all solutions about the positive unique equilibrium
point K and proved that every non-oscillatory positive solution of Equation () tends to K
as t → ∞. Following up the investigation in [], Saker and Agarwal [] studied the os-
cillations and global attractivity of Equation () with time periodic coefficients. Song et al.
[] considered the existence of local and global Hopf bifurcations of Equation (). Up to
now, few results on the properties of numerical solutions for Equation () were established.
In the present paper, we investigate some sufficient conditions under which the numeri-
cal solutions are oscillatory. We also consider the asymptotic behavior of non-oscillatory
numerical solutions.
The remainder of this paper is organized as follows. In the next section, some neces-

sary concepts and results for oscillations of the analytic solutions are given. In Section ,
we obtain a recurrence relation by applying the θ -methods to the simplified form which
comes from making an invariant oscillation transformation on Equation (). Moreover,
the oscillations of the numerical solutions are discussed and conditions under which the
numerical solutions oscillate are obtained. In Section , we investigate the asymptotic be-
havior of non-oscillatory solutions, and the results of some numerical experiments are
given in Section . Finally, conclusions are drawn in Section .

2 Preliminaries
Definition . A solution x(t) of Equation () is said to oscillate about K if x(t) – K has
arbitrarily large zeros. Otherwise, x(t) is called non-oscillatory. When K = , we say that
x(t) oscillates about zero or simply oscillates.

Definition . A sequence {xn} is said to oscillate about {yn} if {xn – yn} is neither eventu-
ally positive nor eventually negative. Otherwise, {xn} is called non-oscillatory. If {yn} = {y}
is a constant sequence, we simply say that {xn} oscillates about {y}. When {yn} = {}, we
say that {xn} oscillates about zero or simply oscillates.

Definition . We say Equation () oscillates if all of its solutions are oscillatory.

Theorem . (see []) Consider the difference equation

an+ – an +
l∑

j=–k

qjan+j = , ()
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assume that k, l ∈ N and qj ∈ R for j = –k, . . . , l. Then the following statements are equiva-
lent:

(i) Every solution of Equation () oscillates;
(ii) The characteristic equation λ –  +

∑l
j=–k qjλj =  has no positive roots.

Theorem . (see []) Consider the difference equation

an+ – an +ωan–k = , ()

where n = , , , . . . , ω ∈ R and k ∈ Z. Then every solution of Equation () oscillates if and
only if one of the following conditions holds:

(i) k = – and ω ≤ –;
(ii) k =  and ω ≥ ;
(iii) k ∈ {. . . , –,–} ∪ {, , . . .} and ω(k + )k+/kk > .

Lemma . For x > – and x 	= , we have ln( + x) > x/( + x).

Lemma . For x < – and x 	= , we have ex < /( – x).

Lemma . (see []) For all m ≥ M,
(i) ( + a/(m – θa))m ≥ ea if and only if / ≤ θ ≤  for a > , ϕ(–) ≤ θ ≤  for a < ;
(ii) ( + a/(m – θa))m < ea if and only if ≤ θ < / for a < , ≤ θ ≤ ϕ() for a > ,

where ϕ(x) = /x – /(ex – ) and M is a positive constant.

Theorem . (see []) Assume that condition () holds, then every solution of Equa-
tion () oscillates about K if and only if

αqKα

(r +Kα)
τ >


e
, ()

where

K =
(
q
p
– r

)/α

is the unique positive equilibrium point of Equation ().

For simplicity, let

T =
αqKα

(r +Kα)
, ()

then () can be written as

Tτ >

e
. ()
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3 Oscillations of numerical solutions
3.1 Transformation
We associate an initial condition of the form

x(t) = ψ(t), –τ ≤ t ≤ , ()

with Equation (), where ψ ∈ C([–τ , ], (,∞)), ψ() > .
According to the correspondingmethod in [], let us introduce an invariant oscillation

transformation x(t) = Kez(t), then Equation () can be reduced to

z′(t) +
αqKα

(r +Kα)
f
(
z(t – τ )

)
= , ()

where

f (u) =
r +Kμ

α

eαu – 
r +Kαeαu .

Then x(t) oscillates about K if and only if z(t) oscillates.

3.2 The difference scheme
Applying the linear θ -method and the one-leg θ -method to Equation (), we obtain the
same recurrence relation

zn+ = zn – hθ
αqKα

(r +Kα)
f (zn+–m) – h( – θ )

αqKα

(r +Kα)
f (zn–m), ()

where  ≤ θ ≤ , h = τ /m, m is a positive integer. zn+ and zn+–m are approximations to
z(t) and z(t – τ ) of Equation () at tn+, respectively.
Let zn = – ln(xn/K), then we have

xn+ = xn exp
(
hθp

Kα – xα
n+–m

r + xα
n+–m

+ h( – θ )p
Kα – xα

n–m
r + xα

n–m

)
. ()

Definition . We call the iteration formula () the exponential θ -method for Equa-
tion (), where θ ∈ [, ], h = τ /m, m ∈ N = {, , . . .}, xn+ and xn+–m are approximations
to x(t) and x(t – τ ) of Equation () at tn+, respectively.

The convergence of the exponential θ -method is given in the following theorem.

Theorem . The exponential θ -method () is convergent with order

{
, when θ 	= /,
, when θ = /.

Proof By the method of steps which is introduced in [], we can easily get this proof.
�
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3.3 Oscillation analysis
It is not difficult to show that xn oscillates aboutK if and only if zn is oscillatory. In order to
study the oscillations of (), we only need to consider the oscillations of (). The following
conditions which are taken from [] will be used in the next analysis:

uf (u) > , for u 	= ,

lim
u→

f (u)
u

= .
()

For (), its linearized form is given by

zn+ = zn – hθ
αqKα

(r +Kα)
zn+–m – h( – θ )

αqKα

(r +Kα)
zn–m. ()

Then, by taking into account (), Equation () is equivalent to

zn+ – zn + hθTzn+–m + h( – θ )Tzn–m = . ()

It follows from [] that () oscillates if () oscillates under condition ().

Definition . The iteration () is said to be oscillatory if all of its solutions are oscilla-
tory.

Definition . We say that the exponential θ -method preserves the oscillations of Equa-
tion () if Equation () oscillates, then there is a h >  or h = ∞ such that () oscillates
for h < h. Similarly, we say that the exponential θ -method preserves the non-oscillations
of Equation () if Equation () non-oscillates, then there is a h >  or h = ∞ such that
() non-oscillates for h < h.

In the following, we study whether the exponential θ -method preserves the oscillations
of Equation (). That is, when Theorem . holds, we investigate the conditions under
which () is oscillatory.

Lemma . The characteristic equation of () is given by

ξ = R
(
–hTξ–m)

, ()

where the function R(x) =  + x/( – θx), θ is a parameter in the exponential θ -method.

Proof Let zn = ξnz in (), we have

ξn+z = ξnz – hθTξn+–mz – h( – θ )Tξn–mz.

That is,

ξ =  – hθTξ –m – h( – θ )Tξ–m,

http://www.advancesindifferenceequations.com/content/2013/1/163
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which is equivalent to

ξ =
 – h( – θ )Tξ–m

 + hθTξ–m =  –
hTξ–m

 + hθTξ–m .

In view of [], the stability function of the θ -method is

R(x) =
 + ( – θ )x

 – θx
=  +

x
 – θx

,

then the characteristic equation of () is given by (). This completes the present proof.
�

Lemma . If Tτ > /e, then the characteristic equation () has no positive roots for  ≤
θ ≤ /.

Proof Let V (ξ ) = ξ – R(–hTξ–m). By Lemma ., we know that

R
(
–hTξ–m) ≤ exp

(
–hTξ–m)

, ξ > ,≤ θ ≤ /. ()

Now we are going to prove thatW (ξ ) = ξ – exp(–hTξ–m) >  for ξ > . Suppose the oppo-
site, that is, there exists a ξ >  such thatW (ξ) ≤ , then ξ ≤ exp(–hTξ–m

 ), and

ξm
 ≤ exp

(
–hmTξ–m


)
= exp

(
–Tτξ–m


)
. ()

Multiplying both sides of the inequality () by Tτeξ–m
 , we obtain

Tτeξ–m
 ξm

 ≤ Tτeξ–m
 exp

(
–Tτξ–m


)
,

which gives

Tτe≤ Tτξ–m
 exp

(
 – Tτξ–m


)
,

therefore we have the following two cases.
Case I: If  –Tτξ–m

 = , then Tτe ≤ , we arrive at the contradiction with the condition
Tτ > /e.
Case II: If  – Tτξ–m

 	= , then according to Lemma ., we get

exp
(
 – Tτξ–m


)
<


 – ( – Tτξ–m

 )
=


Tτξ–m


,

that is,

Tτξ–m
 exp

(
 – Tτξ–m


)
< ,

so Tτe < , which is also a contradiction to Tτ > /e.
Consequently, for ξ > ,

V (ξ ) = ξ – R
(
–hTξ–m) ≥ ξ – exp

(
–hTξ–m)

=W (ξ ) > ,

http://www.advancesindifferenceequations.com/content/2013/1/163
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which implies that the characteristic equation () has no positive roots. The proof is com-
pleted. �

Without loss of generality, in the case of / < θ ≤ , we assume thatm > .

Lemma . If Tτ > /e and / < θ ≤ , then the characteristic equation () has no posi-
tive roots for h < h, where

h =

{
∞, if Tτ ≥ ,
τ ( + lnTτ ), if Tτ < .

Proof Since R(–hTξ–m) is an increasing function of θ when ξ > , then for ξ >  and / <
θ ≤ ,

R
(
–hTξ–m)

=
 – h( – θ )Tξ–m

 + hθTξ–m ≤ 
 + hTξ–m .

In the following, we prove that the inequality

ξ –


 + hTξ–m > , ξ > , ()

holds under certain conditions.
From (), it follows that

ξ –


 + hTξ–m =
ξ –m

 + hTξ–m ρ(ξ ),

where

ρ(ξ ) = ξm – ξm– + hT ,

so we only need to prove ρ(ξ ) >  for ξ > . It is easy to know that ρ(ξ ) is the characteristic
polynomial of the following difference scheme:

zn+ – zn + hTzn+–m = .

According to Theorems . and ., we have that ρ(ξ ) has no positive roots if and only if

hT
mm

(m – )m– > ,

or, equivalently,

lnTτ + (m – ) ln
m

m – 
> . ()

We examine two cases depending on the position of Tτ : Either Tτ ≥  or Tτ < .
Case I: If Tτ ≥ , in view ofm > , then () holds true.

http://www.advancesindifferenceequations.com/content/2013/1/163
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Case II: If Tτ <  and h < τ ( + lnTτ ), then by Lemma . we obtain

lnTτ + (m – ) ln
m

m – 
= lnTτ + (m – ) ln

(
 +


m – 

)

> lnTτ + (m – )


m–

 + 
m–

= lnTτ +
m – 
m

> .

Therefore the inequality () holds for h < h, where

h =

{
∞, if Tτ ≥ ,
τ ( + lnTτ ), if Tτ < .

So we arrive at

V (ξ ) = ξ – R
(
–hTξ–m) ≥ ξ –


 + hTξ–m > 

holds for h < h and ξ > , which implies that the characteristic equation () has no pos-
itive roots. This completes the proof. �

Remark . Since Tτ ∈ (/e, ), then h = τ ( + lnTτ ) > , thus h is meaningful.

In view of (), Lemmas ., . and Theorem ., we have the first main theorem of
this paper.

Theorem . If Tτ > /e, then () is oscillatory for

h <

{
∞, when  ≤ θ ≤ /,
h, when / < θ ≤ ,

where h is defined in Lemma ..

4 Asymptotic behavior of non-oscillatory solutions
In this section, we investigate the asymptotic behavior of non-oscillatory solutions of ().
The following lemma is a useful result on asymptotic behavior of Equation ().

Lemma. (see []) Let x(t) be a positive solution of Equation (),which does not oscillate
about K . Then limt→∞ x(t) = K .

From the relationship between Equations () and (), we know that the non-oscillatory
solution of Equation () satisfies limt→∞ z(t) =  if Lemma . holds. Next, we will prove
that the numerical solution of Equation () can inherit this property.

Lemma . Let zn be a non-oscillatory solution of (), then limn→∞ zn = .

http://www.advancesindifferenceequations.com/content/2013/1/163
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Proof Without loss of generality, we may assume that zn >  for sufficiently large n. Then
by condition () we know that f (zi) >  for sufficiently large i. Moreover, it can be seen
from () that

zn+ – zn + hθTf (zn+–m) + h( – θ )Tf (zn–m) = , ()

which gives

zn+ – zn = –hθTf (zn+–m) – h( – θ )Tf (zn–m) < ,

hence zn+ – zn < , then {zn} is decreasing. So there exists an η ≥  such that

lim
n→∞ zn = η. ()

Now we are going to prove that η = . If this is not the case, that is, if η > , then there
exists N ∈ N and ε >  such that for n –m > N ,  < η – ε < zn < η + ε. Hence η – ε < zn–m
and η – ε < zn–+m. So () yields

zn+ – zn = –hθTf (zn+–m) – h( – θ )Tf (zn–m)

< –hθTf (η – ε) – h( – θ )Tf (η – ε)

= –hTf (η – ε) < ,

which implies that zn+ – zn < A < , where

A =
hT(r +Kα)

α

 – eα(η–ε)

r +Kαeα(η–ε) .

Thus zn → –∞ as n → ∞, which is a contradiction to (). Hence, we finish the proof.
�

Therefore, the second main theorem of this paper is as follows.

Theorem . Let xn be a positive solution of (), which does not oscillate about K , then
limn→∞ xn = K .

5 Numerical experiments
In this section, we give some numerical examples to illustrate our results, consider the
nonlinear DDEs []

x′(t) + x(t) –
x(t)

 + x(t – τ )
= , t ≥ . ()

Obviously, the parameters are p = , q = , r = , α =  and q/p =  >  in Equation ()
and the positive equilibrium is K = . In the following, we give three different values of τ

and discuss the accuracy of the numerical solution and the oscillatory behavior of Equa-
tion ().
First of all, we consider the equation

x′(t) + x(t) –
x(t)

 + x(t – .)
= , t ≥ , ()

http://www.advancesindifferenceequations.com/content/2013/1/163
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Table 1 Comparisons of errors between the exponential θ -method and the Euler method

Exponential θ -method Euler method
θ = 0.2 θ = 0.5 θ = 0.7
AE RE AE RE AE RE AE RE

m = 7 0.0144 0.0112 0.0030 0.0023 0.0174 0.0135 0.0229 0.0177
m = 14 0.0085 0.0066 0.0010 7.8091e–4 0.0080 0.0062 0.0140 0.0109
m = 28 0.0044 0.0034 5.1373e–4 3.9864e–4 0.0040 0.0031 0.0075 0.0058
m = 35 0.0035 0.0027 4.5459e–4 3.5275e–4 0.0032 0.0025 0.0060 0.0047
m = 70 0.0016 0.0013 3.7574e–4 2.9156e–4 0.0017 0.0013 0.0029 0.0023

Figure 1 The error as a function of time.

with initial value x(t) = . for t ≤ . Let the stepsize h = ./m, we shall use the exponen-
tial θ -method with different θ and the Euler method to get the numerical solution at t = .
On the other hand, the exact solution is x()≈ .. In Table  we have listed the abso-
lute errors (AE) and the relative errors (RE) at t = . We can see from this table that the
errors of the Euler method are larger than those of the exponential θ -method. Therefore,
compared with the classical Eulermethod, the exponential θ -method has higher accuracy.
Furthermore, in Figures  and , the plots of the error as a function of time and as a func-
tion of the stepsize for a sequence of stepsizes are presented. The two figures also show
that the effect of approximation of the numerical solution is good.
In addition, it is easy to see that condition () holds true. That is, the analytic solutions of

Equation () are oscillatory. In Figures -, we draw the figures of the analytic solutions
and the numerical solutions of Equation (), respectively. In Figure , m = , θ = / ∈
[, /] and Tτ = . > /e. Simultaneously, in Figure ,m = , θ = / ∈ (/, ] and Tτ =
. ≥  > /e. From the two figures, we can see that the numerical solutions of Equation
() oscillate about K = , which is in agreement with Theorem ..
Next, we consider the following equation:

x′(t) + x(t) –
x(t)

 + x(t – .)
= , t ≥ , ()

http://www.advancesindifferenceequations.com/content/2013/1/163
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Figure 2 The error as a function of the stepsize.

Figure 3 The analytic solution of (23).

with initial value x(t) = . for t ≤ . In Equation (), it is not difficult to see that con-
dition () is fulfilled. That is, the analytic solutions of Equation () are oscillatory. In
Figures -, we draw the figures of the analytic solutions and the numerical solutions of
Equation (), respectively. In Figure ,m = , θ = / ∈ [, /] and Tτ = . > /e. Fur-
ther, in Figure ,m = , θ = / ∈ (/, ]. By simple calculation, we have /e < Tτ = . < 
and h = τ /m = . < h = .. We can see from the three figures that the numerical

http://www.advancesindifferenceequations.com/content/2013/1/163
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Figure 4 The numerical solution of (23) withm = 28 and θ = 0.2.

Figure 5 The numerical solution of (23) withm = 70 and θ = 0.8.

solutions of Equation () oscillate about K = , which are consistent with Theorem ..
On the other hand, we notice that h = . ≤ . < h = . under the assumption
 <m ∈N, so the stepsize h is not optimal.
Moreover, we consider another equation

x′(t) + x(t) –
x(t)

 + x(t – .)
= , t ≥ , ()

http://www.advancesindifferenceequations.com/content/2013/1/163
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Figure 6 The analytic solution of (24).

Figure 7 The numerical solution of (24) withm = 40 and θ = 0.4.

with initial value x(t) = . for t ≤ . For Equation (), it is easy to see that Tτ = . < /e,
so condition () is not satisfied. That is, the analytic solutions of Equation () are non-
oscillatory. In Figures -, we draw the figures of the analytic solutions and the numerical
solutions of Equation (), respectively. In Figure , we can see that x(t)→ K =  as t → ∞.
From Figures  and , we can also see that the numerical solutions of Equation ()

http://www.advancesindifferenceequations.com/content/2013/1/163
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Figure 8 The numerical solution of (24) withm = 20 and θ = 0.75.

Figure 9 The analytic solution of (25).

satisfy xn → K =  as n → ∞. That is, the numerical method preserves the asymptotic
behavior of non-oscillatory solutions of Equation (), which coincides with Theorem ..
Finally, by Definition ., we can see from these figures that the exponential θ -method

preserves the oscillations of Equations () and () and the non-oscillations of Equation
(), respectively.
All the above numerical examples are in agreement with the main results in this paper.

http://www.advancesindifferenceequations.com/content/2013/1/163
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Figure 10 The numerical solution of (25) withm = 60 and θ = 0.1.

Figure 11 The numerical solution of (25) withm = 30 and θ = 0.6.

6 Conclusions
In this paper, we discuss the oscillations of the numerical solutions of a nonlinear
DDEs in a hematopoiesis model. The convergent exponential θ -method, namely the lin-

ear θ -method and the one-leg θ -method in an exponential form, is constructed.We obtain
some conditions underwhich the numerical solutions oscillate in the case of oscillations of
the analytic solutions.We also prove that non-oscillatory numerical solutions can preserve

http://www.advancesindifferenceequations.com/content/2013/1/163
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the corresponding properties of the analytic solutions. It is pointed out that the stepsize
h in Lemma . is not optimal, which gives us the further working direction.
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