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Abstract
To analyze the vibrational modes of water and methane in structure I gas hydrates, we constructed
a 178-atom supercell with two small cages of type 512 and six large cages of type 51262. We applied
the density functional theory method to simulate the vibrational spectrum and normal modes of
methane hydrates. In accord with our previous studies, we confirmed that two groups of hydrogen
bond (H-bond) peaks (at around 291 and 210 cm−1) in the translational bands come from two
kinds of intermolecular H-bond vibrational modes. This is the first investigation of H-bond
vibrations in methane hydrates. The partial modes of CH4 were extracted. We found that the CH4

phonons in the translational region are below 180 cm−1 so that the influence of methane on the
H-bond is insignificant. We proposed a new method to decompose gas hydrates via direct
application of terahertz radiation to the H-bonds. Herein, we confirmed that CH4 molecules do
not absorb this energy.

1. Introduction

With the depletion of oil and coal, gas hydrates will play a vital role in energy use and environmental

protection. Sloan [1] estimated that the current energy reserves of methane hydrates are twice the total fuel

fossil reserves, Lunine and Stevenson [2] wrote that methane hydrates make up the major satellite nebulae.

And Takeya et al [3] revealed that the potential of methane hydrate used in actual methane storage. In

addition, solutions to the blockage of methane hydrates in natural gas pipelines [4] and the accelerating

effects of climate change [5] are highly valued. Traditional methods for extraction of natural methane

hydrates include thermal stimulation, pressure reduction, and catalysts. However, commercial exploitation

has not yet been realized due to economic and safety factors [6, 7]. Therefore, it is imperative to develop an

efficient and sustainable method to dissociate methane hydrates.

Gas hydrates are crystalline solids that are often composed of cage-like structures of host molecules

surrounding various nonpolar guest molecules. Gas hydrates are divided into various structures according

to the cage numbers and cage types. Among these, structure I (sI) is the most common structure found in

nature, first presented by Muller and von Stackelberg in 1951 [8], in which methane constitutes the

overwhelming majority of guest molecules [9]. Hoshikawa et al [10] examined hydrogen of deuterated

methane hydrate by means of the neutron powder diffraction data. An sI-type crystal comprises two small

cages of type 512 (pentagonal dodecahedrons) and six large cages of type 51262 (a type of tetrakaidecahedral

cavity), and only small molecules (0.4–0.55 nm) [11] such as methane and carbon dioxide can be encaged.
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Water molecules are entrapped into cages by hydrogen bonding, whereas the host and guest molecules are
connected by van der Waals forces.

Ice XVII, one kind of sI-type lattice, is derived from the phase diagram of the first H2–H2O compounds
prepared in the laboratory [12, 13]. Ice XVII has the same structural definition as sI: a composition of
pentagons linked with other pentagons via shared vertices [14]. For sI, two additional hexagons are required
to maintain the hydrogen-bond strain. However, ice XVII can only form pentagons and therefore adopts a
pipe structure rather than a cage structure like sI.

Since Anthonsen [15] first presented the Raman scattering spectroscopy of halogen hydrates, many
researchers have focused on the effects of encapsulated methane in the band of C–H stretching via Raman
spectroscopy [15–17]. Sum et al [16] first assigned the peaks at 2905 and 2915 cm−1 to the large cage and
small cage, respectively. The two peaks’ intensity ratio of 3:1 was interpreted as the number ratio of these
two cages. This phenomenon in the vibrational spectrum was also confirmed by Greathouse et al [17]. In
another study, Kortus et al [18] used melanophlogite, which has the same framework structure as sI, to
discuss the influence of structure on the Raman spectrum of methane.

In contrast, Schicks et al [19] explored the influence of host molecules by Raman spectroscopy rather
than guest molecules and found similarities in the spectra between sI and ice Ih in O–H stretching and
H-bond translational vibrations. Hanson and Berg [20] indicated that metastable methane hydrates must
have the ability to exist in different cavities. Tulk et al [21] compared the host lattice of methane hydrates
with ice Ih in the region of coupled O–H vibrations.

In theoretical simulations, John [22] simulated the sI structure with an ab initio method to explore the
relationship between the stretching vibrational frequencies and the CH bond length. Ramya et al [23]
investigated the effects of methane in large and small cages, and the properties of empty cages.

Although many experimental and theoretical studies of methane hydrates have been carried out, the
molecular vibrations in the far-infrared (IR) region have yet to be investigated due to the complexities of
mixed host and guest phonons. From the view of physics, to explore an efficient method of the exploitation
of gas hydrates for energy purposes, one should investigate the interactive mechanisms of H-bonds inside
them.

In this study, we simulated the vibrational modes of H-bonds in sI methane hydrates. We present the
calculated IR and Raman spectra and phonon density of states (PDOS). Compared with ice XVII, an sI-type
clathrate hydrate without guest molecules [24], the encapsulation of methane was found to have little effect
on H-bonds. This finding confirmed our prediction that a new method for the dissociation of gas hydrates
could be explored [25].

2. Computational details

We performed calculations on sI methane hydrates using the CASTEP [26] code, a first-principles density
functional theory module in the Materials Studio platform. The first difficult task was to construct a
hydrogen disordered sI crystal structure, a supercell with 178 atoms. We generated several
zero-total-dipole-moment sI clathrate hydrate structure files by GenIce [27] script with various random
seeds. We then selected the structure that possessed the most even distribution for this study. The structure
is illustrated in a supplementary file (https://stacks.iop.org/NJP/22/093066/mmedia) of supporting
information.

We chose the revised Perdew–Burke–Ernzerhof functional [28], a generalized gradient approximation
exchange–correlation functional, for the quantum mechanics calculation. The self-consistent field and
energy tolerance was set at 1.0 × 10−9 eV/atom. The energy cutoff was set at 750 eV, and we calculated the
ω(q) relationship at the gamma point. The reduced Brillouin zone of a large supercell is very small,
resulting in a tiny ω(q) dispersion. The norm-conserving pseudopotential was used for calculation of
phonons. The hydrostatic pressure was set at 1 MPa.

3. Results and discussion

Figure 1 depicts the simulated spectra of Raman, IR, PDOS (sI), and PDOS (CH4), and the correlated data
are listed in table 1. Theoretically, the optical vibrational modes are all Raman and IR active due to
disordered hydrogen. Due to the broad scale of the intensity in various regions, we adjusted their
proportions and displayed the results in four parts for comparison. In the translation region, because the
polarizability does not change much, the strong group of H-bond vibrations disappears in the IR and
Raman spectrum. All phonons herein can be seen from the PDOS curve. The two groups are not
particularly regular due to mixing with CH4 vibrational modes. Li et al [29] first noted in 1989 that many
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Figure 1. Simulated vibrational spectra of sI gas hydrates. From top to bottom, Raman, IR, PDOS, and partial PDOS of CH4.

Table 1. Comparisons of some typical peaks with those in the literature, including theoretical calculation and
Raman experimental data. All units are cm−1.

PDOS INS
IR/Raman
(this work)

Theoretical calculation
(literature)

Raman experiment
data

Weak H-bond 210 208a 178/179 217b 206c

Strong H-bond 291 294a

CH4 bending 1303 1302/1303 1315d/1316–1344e/1400>f /1254g

CH4 rocking 1523 1526d/1536–1540e/1463g

CH4 symmetric stretch 2969 2939d/2925–2943e/3014f /2871g 2915h/2915i/2913j

CH4 asymmetric stretch 3083 3071d/3021–3059e/3167f /2976g

aReference [41], bReference [42], cReference [19], dReference [23], eReference [43], f Reference [22], gReference
[49], hReference [16], iReference [44], jReference [45]

ice phases have two main H-bond peaks. Li and Ross [30] suggested that ice has two different H-bond
strengths; however, this model has not been widely accepted [31–33]. In 2017, we found two intrinsic
H-bond vibrational modes in ice Ic [34]. For one H2O molecule in an ice Ic lattice, the strong mode
includes vibration of four linked H-bonds along the bisector of the HOH angle, which is called a four-bond
mode. In the weak mode, only two H-bonds vibrate while the other two remain almost stationary, which is
called a two-bond mode. Later, we found that these two kinds of H-bond vibrational modes that comprise
the two main peaks in the translation region are a general rule among ice phases [34–40], and we proved
that this originated from the local tetrahedral structure of ice [25]. Regarding the hydrogen-ordered ice Ic as
the ideal model, the vibrational frequency ratio of these two modes is

√
2.

According to the simulated normal modes of H-bonds in clathrate ice in this work, the strongest
frequency of the four-bond mode is at 291 cm−1, and we selected a typical two-bond mode at 210 cm−1 for
comparison. Figure 2 illustrates the vibration processes of these two modes. (For the dynamic processes,
please see the supplementary material.) Celli et al [41] reported inelastic neutron scattering (INS)
experiments of various clathrate hydrates. For their sI structure, the guest molecule was xenon, so the PDOS
curve came mainly from phonons of ice. Two sharp peaks could be seen at 294 and 208 cm−1. The revised
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Figure 2. Two examples of H-bond vibration modes. Typical molecules are shown in gold. The oxygen atoms are in red and the
carbon atoms are in blue. Wavenumber at 210 cm−1 is a two-bond mode, and wavenumber at 291 cm−1 is a four-bond mode.

Table 2. Comparisons of sI average structural parameters with experiments and ice XVII.

System
r(H–O)

(Å)
r(C–H)

(Å)
r(O–H)

(Å)
Angle (HCH)

(◦)
Angle (HOH)

(◦)

sI (exp.) 1.772a 1.098/1.148b 1.015a 109.5a —
sI (cal.) 1.871 1.094/1.092 0.983 109.4 104.7–107.5
Ice XVII 1.827c — 0.988c — 105–107.9c

aReference [46], bReference [22], cReference [47]

Perdew–Burke–Ernzerhof functional slightly underestimates the hydrogen bonding, so our simulated
H-bond length is greater than that from the experiment by Klapproth [46]. Table 2 shows that the
calculated average length of the H-bonds is 1.871 Å, which is 5.6% greater than the 1.772 Å length from the
experimental measurement.

The translational region includes a dormant Raman peak at 179 cm−1, and only one obvious IR peak at
178 cm−1. These results are consistent with experiments in which the strong H-bond peak was difficult to
detect with a photon-scattering method [30]. Schicks et al [19] presented a Raman scattering peak at
206 cm−1 in this region. Tse et al [42] used the Perdew–Burke–Ernzerhof generalized gradient
approximation functional to propose a peak at 217 cm−1. To verify the effects of the guest molecules,
methane, the partial PDOS of CH4 is presented in figure 1. In the translation region, the main
contributions of methane are below 180 cm−1. Because no H-bonds exist between clathrate ice and
methane, most of the phonons in this region come from the H-bonds of ice.

Ice XVII, a kind of sI-type clathrate ice structure, was investigated in our previous study, and its
vibrational spectrum is presented in figure 3 for comparison [47]. The two triangle peaks of ice XVII are
obvious, similar to ice Ih [30]. However, they are less apparent in the sI structure due to mixing with guest
molecules.

We compare the INS spectra of sI and liquid water in the far-IR region in figure 4 [41, 48]. The
spectrum of sI has two main H-bond peaks at approximately 26–37 meV [31]. However, no such H-bond
vibration modes are found in liquid water because it lacks a rigid tetrahedral structure. For liquid water, the
strength of molecular rotation modes is lower and leaves an only weak absorption valley in this area. We
discovered this phenomenon by comparing liquid water and ice Ih [25]. Although the H-bond absorption
band in sI has a slight redshift relative to ice Ih, one can see that the obvious H-bond vibrational
frequencies of clathrate ice in sI gas hydrates also fall in the valley of liquid water. The application of
terahertz radiation in this area to decompose gas hydrates in water surroundings may be an efficient
method. This study further confirms our previous suggestion for energy resource exploitation [25].

As shown in figure 1, the spectrum of the region of libration shows three groups due to the three types
of molecular rotation modes: rocking (highest peak, 598 cm−1), wagging (highest peak, 745 cm−1), and
twisting (highest peak, 975 cm−1). The encapsulated CH4 molecules do not contribute any phonons in this
band. The simulated PDOS herein agrees well with ice XVII, as shown in figure 3. In contrast, the simulated
Raman peaks only manifest one group, the main peak is found at 963 cm−1. And the simulated IR spectrum
only shows the wagging band, and the highest absorption peak is found at 854 cm−1.

The third part in figure 1 shows the intramolecular bending modes of CH4 and H2O. The two weak
peaks at 1303 and 1523 cm−1 are CH4 bending and rocking modes, which agrees well with previous reports
[22, 23, 43–45, 49, 50]. There are 25 modes at around 1303 cm−1. Figure 5(a) shows one of the vibrational
modes at 1303 cm−1, where the four hydrogens in the gold-colored molecule vibrate in the same direction,
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Figure 3. Comparison between sI water clathrates and ice XVII. Ice XVII is a kind of sI clathrate ice without guest molecules and
methane molecules encapsulated in the sI structure.

Figure 4. Comparison of translation band of sI gas hydrates [41] (the guest molecule is xenon) and liquid water [48]. H-bond
absorption ranges from 20 to 40 meV.

which can be named CH4 bending. In contrast, the 16 modes around 1523 cm−1 are CH4 rocking modes.
Due to limited change in the dipole moment and polarizability for a CH4 molecule, the intensity of mode at
1523 cm−1 is very weak for both Raman and IR spectra. However, Chazallon et al [44, 45] observed an
overtone at 3053 cm−1 and is corresponding to CH4 rocking. Another overtone at 2570 cm−1 was assigned
to bending of methane [44, 50]. For the CH4 bending modes, the changes in vibrational strength within
cages of various sizes are very limited. The wavenumbers from 1619 to 1716 cm−1 are the bending modes of
H2O. For any IR or Raman spectrum, the peaks are too small to be detected experimentally. The strengths
of H2O bending are also remained stable in various ice phases, and figure 3 shows that the band width is
nearly the same as that of ice XVII.

The PDOS curve for the CH4 stretching band ranges from 2950 to 3125 cm−1. The stronger peaks
correspond to asymmetric stretching, and the weaker peaks correspond to symmetric stretching. Both
bands show obvious splitting due to the two cage sizes. Compared with the high intensities of OH
stretching, these peaks are nearly invisible in the Raman and IR spectra. Table 1 summarizes the CH4

stretching modes from the simulations and experiments. The calculated CH average bond length is
1.094 cm−1, which is 3.7% shorter than the experimental value [22] of 1.136 cm−1. Inconsistent with the
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Figure 5. Four examples of vibration normal modes of encapsulated methane. Wavenumbers at 1303 and 1523 cm−1 are
bending and rocking. Wavenumbers at 2969 and 3083 cm−1 are symmetric stretching and asymmetric stretching.

literature [16, 17], the splitting of the CH4 stretching mode is 20 cm−1 for the two sizes of cages. This
observation is in accord with simulations from Atilhan et al [51] and Hiratsuka et al [49]. The splitting of
the CH4 stretching band is related to the difference of the CH bond length in the large and small cages.

The vibration band from 3144 to 3416 cm−1 represents OH stretching, as shown in the fourth part of
figure 1. The IR spectrum shows two very active peaks at 3211 and 3282 cm−1, which represent more
symmetric stretching. However, the strongest Raman peak is at 3415 cm−1, which represents asymmetric
stretching modes. As shown in table 2, the OH bond length of sI is shorter than that of ice XVII so that the
intramolecular OH stretching band presents a 40 cm−1 blueshift, as shown in figure 3, so the wavenumbers
of the sI H-bonds have a redshift from ice XVII.

4. Conclusions

Based on the first-principles density functional theory method, we calculated the normal modes of sI gas
hydrates, and the simulated Raman scattering and IR absorption spectra are presented for comparison.
Because INS experiments can detect phonons throughout the reduced Brillouin zone, previous INS results
can be compared with our PDOS curve integrated by ω(q) dispersions. With good agreement with the
literature, we focused on the H-bonds in the far-IR molecular translation band. Although the two groups of
H-bonds of clathrate ice do not present two distinct triangle shapes such as in ice XVII, we can still confirm
that the phonons in this region come from two kinds of H-bond vibration modes. Because the
contributions of CH4 in this area are below 180 cm−1, we confirm that the effects of methane on these two
main peaks are negligible.

The interactions between methane and water cages can be ignored in all regions except the far-IR region.
We observed similarities between sI and ice XVII. For the phonons of methane, the splitting of CH
stretching can be observed due to the influence of differences in cage size.

We have proposed a new method to decompose gas hydrates via direct application of terahertz radiation
to the H-bonds. After a comparison with the partial PDOS of CH4 in this band, we confirmed that the CH4

molecules do not absorb this energy. Further experimental measurements are needed.
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