499 research outputs found

    The Xenopus Suc1/Cks Protein Promotes the Phosphorylation of G2/M Regulators

    Get PDF
    The entry into mitosis is controlled by Cdc2/cyclin B, also known as maturation or M-phase promoting factor (MPF). In Xenopus egg extracts, the inhibitory phosphorylations of Cdc2 on Tyr-15 and Thr-14 are controlled by the phosphatase Cdc25 and the kinases Myt1 and Wee1. At mitosis, Cdc25 is activated and Myt1 and Wee1 are inactivated through phosphorylation by multiple kinases, including Cdc2 itself. The Cdc2-associated Suc1/Cks1 protein (p9) is also essential for entry of egg extracts into mitosis, but the molecular basis of this requirement has been unknown. We find that p9 strongly stimulates the regulatory phosphorylations of Cdc25, Myt1, and Wee1 that are carried out by the Cdc2/cyclin B complex. Overexpression of the prolyl isomerase Pin1, which binds to the hyperphosphorylated forms of Cdc25, Myt1, and Wee1 found at M-phase, is known to block the initiation of mitosis in egg extracts. We have observed that Pin1 specifically antagonizes the stimulatory effect of p9 on phosphorylation of Cdc25 by Cdc2/cyclin B. This observation could explain why overexpression of Pin1 inhibits mitotic initiation. These findings suggest that p9 promotes the entry into mitosis by facilitating phosphorylation of the key upstream regulators of Cdc2

    The Xenopus Chk1 Protein Kinase Mediates a Caffeine-sensitive Pathway of Checkpoint Control in Cell-free Extracts

    Get PDF
    We have analyzed the role of the protein kinase Chk1 in checkpoint control by using cell-free extracts from Xenopus eggs. Recombinant Xenopus Chk1 (Xchk1) phosphorylates the mitotic inducer Cdc25 in vitro on multiple sites including Ser-287. The Xchk1-catalyzed phosphorylation of Cdc25 on Ser-287 is sufficient to confer the binding of 14-3-3 proteins. Egg extracts from which Xchk1 has been removed by immunodepletion are strongly but not totally compromised in their ability to undergo a cell cycle delay in response to the presence of unreplicated DNA. Cdc25 in Xchk1-depleted extracts remains bound to 14-3-3 due to the action of a distinct Ser-287-specific kinase in addition to Xchk1. Xchk1 is highly phosphorylated in the presence of unreplicated or damaged DNA, and this phosphorylation is abolished by caffeine, an agent which attenuates checkpoint control. The checkpoint response to unreplicated DNA in this system involves both caffeine-sensitive and caffeine-insensitive steps. Our results indicate that caffeine disrupts the checkpoint pathway containing Xchk1

    Electrohydrodynamic jet printing of PZT thick film micro-scale structures

    Get PDF
    This paper reports the use of a printing technique, called electrohydrodynamic jet printing, for producing PZT thick film micro-scale structures without additional material removing processes. The PZT powder was ball-milled and the effect of milling time on the particle size was examined. This ball-milling process can significantly reduce the PZT particle size and help to prepare stable composite slurry suitable for the E-Jet printing. The PZT micro-scale structures with different features were produced. The PZT lines with different widths and separations were fabricated through the control of the E-Jet printing parameters. The widths of the PZT lines were varied from 80 μm to 200 μm and the separations were changed from 5 μm to 200 μm. In addition, PZT walled structures were obtained by multi-layer E-Jet printing. The E-Jet printed PZT thick films exhibited a relative permittivity (ɛr) of ∼233 and a piezoelectric constant (d33, f) of ∼66 pC N−1

    Activation of Xenopus Chk1 by mutagenesis of threonine-377

    Get PDF
    AbstractXenopus Chk1 (Xchk1) is required for the checkpoint-associated delay of the cell cycle in frog egg extracts containing unreplicated or UV-damaged DNA. Phosphorylation of Xchk1 at multiple sites in the SQ/TQ domain (residues 314–366) in response to unreplicated or UV-damaged DNA results in elevation of its kinase activity. We have found that mutagenesis of Thr-377 in the conserved Thr–Arg–Phe (TRF) motif of Xchk1 also leads to a substantial increase in kinase activity. Thr-377 does not appear to be a site of phosphorylation in Xchk1. These findings suggest that Thr-377 may play a role in suppressing the activity of Xchk1

    Characterization of the Native Lysine Tyrosylquinone Cofactor in Lysyl Oxidase by Raman Spectroscopy

    Get PDF
    Lysine tyrosylquinone (LTQ) recently has been identified as the active site cofactor in lysyl oxidase by isolation and characterization of a derivatized active site peptide. Reported in this study is the first characterization of the underivatized cofactor in native lysyl oxidase by resonance Raman (RR) spectrometry. The spectrum is characterized by a unique set of vibrational modes in the 1200 to 1700 cm^(−1) region. We show that the RR spectrum of lysyl oxidase closely matches that of a synthetic LTQ model compound, 4-n-butylamino-5-ethyl-1,2-benzoquinone, in aqueous solutions but differs significantly from those of other topa quinone-containing amine oxidases under similar conditions. Furthermore, we have observed the same ^(18)O shift of the C=O stretch in both the lysyl oxidase enzyme and the LTQ cofactor model compound. The RR spectra of different model compounds and their D shifts give additional evidence for the protonation state of LTQ cofactor in the enzyme. The overall similarity of these spectra and their shifts shows that the lysyl oxidase cofactor and the model LTQ compound have the same structure and properties. These data provide strong and independent support for the new cofactor structure, unambiguously ruling out the possibility that the structure originally reported had been derived from a spurious side reaction during the derivatization of the protein and isolation of the active site peptide

    Cancer-selective, single agent chemoradiosensitising gold nanoparticles

    Get PDF
    Two nanometre gold nanoparticles (AuNPs), bearing sugar moieties and/or thiol-polyethylene glycol-amine (PEG-amine), were synthesised and evaluated for their in vitro toxicity and ability to radiosensitise cells with 220 kV and 6 MV X-rays, using four cell lines representing normal and cancerous skin and breast tissues. Acute 3 h exposure of cells to AuNPs, bearing PEG-amine only or a 50:50 ratio of alpha-galactose derivative and PEG-amine resulted in selective uptake and toxicity towards cancer cells at unprecedentedly low nanomolar concentrations. Chemotoxicity was prevented by co-administration of N-acetyl cysteine antioxidant, or partially prevented by the caspase inhibitor Z-VAD-FMK. In addition to their intrinsic cancer-selective chemotoxicity, these AuNPs acted as radiosensitisers in combination with 220 kV or 6 MV X-rays. The ability of AuNPs bearing simple ligands to act as cancer-selective chemoradiosensitisers at low concentrations is a novel discovery that holds great promise in developing low-cost cancer nanotherapeutics

    Fission Yeast Sec3 and Exo70 Are Transported on Actin Cables and Localize the Exocyst Complex to Cell Poles

    Get PDF
    The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP2 and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk
    corecore