133 research outputs found

    Tip sharpened methods for atomic force microscopy

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Validity of black hole complementarity in the context of generalized uncertainty principle

    Full text link
    Recently, Elias C. Vagenas et al and Yongwan Gim et al studied the validity of the no-cloning theorem in the context of generalized uncertainty principle (GUP), but they came to conflicting conclusions. Motivated by a recent work presented by Xin-Dong Du, we investigate the corrections to the temperature for Schwarzschild black hole in the context of different forms of GUP, and obtain the required energy to duplicate information for the Schwarzschild black hole, it shows that the no-cloning theorem in the present of GUP is safe

    Comparison of the ERP-Based BCI Performance Among Chromatic (RGB) Semitransparent Face Patterns

    Get PDF
    Objective: Previous studies have shown that combing with color properties may be used as part of the display presented to BCI users in order to improve performance. Build on this, we explored the effects of combinations of face stimuli with three primary colors (RGB) on BCI performance which is assessed by classification accuracy and information transfer rate (ITR). Furthermore, we analyzed the waveforms of three patterns. Methods: We compared three patterns in which semitransparent face is overlaid three primary colors as stimuli: red semitransparent face (RSF), green semitransparent face (GSF), and blue semitransparent face (BSF). Bayesian linear discriminant analysis (BLDA) was used to construct the individual classifier model. In addition, a Repeated-measures ANOVA (RM-ANOVA) and Bonferroni correction were chosen for statistical analysis. Results: The results indicated that the RSF pattern achieved the highest online averaged accuracy with 93.89%, followed by the GSF pattern with 87.78%, while the lowest performance was caused by the BSF pattern with an accuracy of 81.39%. Furthermore, significant differences in classification accuracy and ITR were found between RSF and GSF (p < 0.05) and between RSF and BSF patterns (p < 0.05). Conclusion: The semitransparent faces colored red (RSF) pattern yielded the best performance of the three patterns. The proposed patterns based on ERP-BCI system have a clinically significant impact by increasing communication speed and accuracy of the P300-speller for patients with severe motor impairment

    Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides

    Get PDF
    Subwavelength grating (SWG) structures are an essential tool in silicon photonics, enabling the synthesis of metamaterials with a controllable refractive index. Here we propose, for the first time to the best of our knowledge, tilting the grating elements to gain control over the anisotropy of the metamaterial. Rigorous finite difference time domain simulations demonstrate that a 45° tilt results in an effective index variation on the fundamental TE mode of 0.23 refractive index units, whereas the change in the TM mode is 20 times smaller. Our simulation predictions are corroborated by experimental results. We furthermore propose an accurate theoretical model for designing tilted SWG structures based on rotated uniaxial crystals that is functional over a wide wavelength range and for both the fundamental and higher order modes. The proposed control over anisotropy opens promising venues in polarization management devices and transformation optics in silicon photonics.Universidad de Málaga (UMA); Ministerio de Economía y Competitividad (MINECO) (IJCI-2016-30484, TEC2015-71127-C2-R, TEC2016-80718-R); Ministerio de Educación, Cultura y Deporte (MECD) (FPU16/06762); European Regional Development Fund (ERDF); Comunidad de Madrid (SINFOTON-CM S2013/MIT-2790); European Association of National Metrology Institutes (EURAMET) (H2020-MSCA-RISE-2015:SENSIBLE, JRP-i22 14IND13 Photind)

    Designing polarization management devices by tilting subwavelength grating structures

    Get PDF
    Subwavelength gratings (SWG) are periodic structures which behave as controllable homogeneous metamaterials. SWGs are extremely interesting when they are used in platforms with a limited choice of material refractive indices, enabling the design of a myriad of high-performance devices. Here we present a novel technique to gain control over the intrinsic anisotropy of the synthesized metamaterial. We show that tilting the silicon segments in a SWG structure mainly affects the in-plane (TE) modes, with little impact on the out-of-plane (TM) modes. Moreover, we present a methodology to quickly but accurately calculate the modes of a tilted periodic structure modeling the structure as a rotated uniaxial crystal which can be solved with an anisotropic mode solver. Measurements on a set of fabricated tilted SWG waveguides validate our simulation results. By using the presented technique, we design a polarization beam splitter based on a 2x2 multimode interferometer. The design is based on the optimization of the tilting angle to tone the beat length of the TE modes to be a half of the beat length of the TM modes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech; Ministerio de Economía y Competitividad (MINECO) (IJCI-2016-30484, TEC2015-71127-C2-R, TEC2016-80718-R); Ministerio de Educación, Cultura y Deporte (MECD) (FPU16/06762); European Regional Development Fund (ERDF); Comunidad de Madrid (SINFOTON-CM S2013/MIT-2790); European Association of National Metrology Institutes (EURAMET) (H2020-MSCA-RISE-2015:SENSIBLE, JRP-i22 14IND13 Photind)

    Ultra-broadband Silicon Photonic Multimode Interference Coupler

    Get PDF
    In integrated optics, multimode interference couplers (MMIs) are used as light-wave splitters and combiners in a wide variety of devices ranging from spectrometers to sensors and coherent optical receivers. While their design and operation is generally well understood [1], the operational bandwidth remains limited. Here we present a sub-wavelength structured MMI, shown in Fig. 1(a), that overcomes this limitation and experimentally demonstrate a bandwidth exceeding 300nm at telecom wavelength, with more than 500nm bandwidth potentially attainable (as per 3D-FDTD simulations).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Measurement Accuracy in Silicon Photonic Ring Resonator Thermometers: Identifying and Mitigating Intrinsic Impairments

    Full text link
    Silicon photonic ring resonator thermometers have been shown to provide temperature measurements with a 10 mK accuracy. In this work we identify and quantify the intrinsic on-chip impairments that may limit further improvement in temperature measurement accuracy. The impairments arise from optically induced changes in the waveguide effective index, and from back-reflections and scattering at defects and interfaces inside the ring cavity and along the path between light source and detector. These impairments are characterized for 220 x 500 nm Si waveguide rings by experimental measurement in a calibrated temperature bath and by phenomenological models of ring response. At different optical power levels both positive and negative light induced resonance shifts are observed. For a ring with L = 100 um cavity length, the self-heating induced resonance red shift can alter the temperature reading by 200 mK at 1 mW incident power, while a small blue shift is observed below 100 uW. The effect of self-heating is shown to be effectively suppressed by choosing longer ring cavities. Scattering and back-reflections often produce split and distorted resonance line shapes. Although these distortions can vary with resonance order, they are almost completely invariant with temperature for a given resonance and do not lead to measurement errors in themselves. The effect of line shape distortions can largely be mitigated by tracking only selected resonance orders with negligible shape distortion, and by measuring the resonance minimum wavelength directly, rather than attempting to fit the entire resonance line shape. The results demonstrate the temperature error due to these impairments can be limited to below the 3 mK level through appropriate design choices and measurement procedures

    Optical wavefront phase-tilt measurement using Si-photonic waveguide grating couplers

    Full text link
    Silicon photonic wavefront phase-tilt sensors for wavefront monitoring using surface coupling grating arrays are demonstrated. The first design employs the intrinsic angle dependence of the grating coupling efficiency to determine local wavefront tilt, with a measured sensitivity of 7 dB/degree. A second design connects four gratings in an interferometric waveguide circuit to determine incident wavefront phase variation across the sensor area. In this device, one fringe spacing corresponds to approximately 2 degree wavefront tilt change. These sensor elements can sample a wavefront incident on the chip surface without the use of bulk optic elements, fiber arrays, or imaging arrays. Both sensor elements are less than 60 um across, and can be combined into larger arrays to monitor wavefront tilt and distortion across an image or pupil plane in adaptive optics systems for free space optical communications, astronomy and beam pointing applications

    Intelligent machines work in unstructured environments by differential neuromorphic computing

    Full text link
    Efficient operation of intelligent machines in the real world requires methods that allow them to understand and predict the uncertainties presented by the unstructured environments with good accuracy, scalability and generalization, similar to humans. Current methods rely on pretrained networks instead of continuously learning from the dynamic signal properties of working environments and suffer inherent limitations, such as data-hungry procedures, and limited generalization capabilities. Herein, we present a memristor-based differential neuromorphic computing, perceptual signal processing and learning method for intelligent machines. The main features of environmental information such as amplification (>720%) and adaptation (<50%) of mechanical stimuli encoded in memristors, are extracted to obtain human-like processing in unstructured environments. The developed method takes advantage of the intrinsic multi-state property of memristors and exhibits good scalability and generalization, as confirmed by validation in two different application scenarios: object grasping and autonomous driving. In the former, a robot hand experimentally realizes safe and stable grasping through fast learning (in ~1 ms) the unknown object features (e.g., sharp corner and smooth surface) with a single memristor. In the latter, the decision-making information of 10 unstructured environments in autonomous driving (e.g., overtaking cars, pedestrians) is accurately (94%) extracted with a 40*25 memristor array. By mimicking the intrinsic nature of human low-level perception mechanisms, the electronic memristive neuromorphic circuit-based method, presented here shows the potential for adapting to diverse sensing technologies and helping intelligent machines generate smart high-level decisions in the real world.Comment: 16 pages, 5 figure
    corecore