497 research outputs found

    Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage

    Get PDF
    The composite sorbents of MgSO4-impregnated zeolite 13X and activated alumina are developed for thermal energy storage (TES) with different temperature ranges. The sorption and desorption characteristics of raw and MgSO4-impregnated activated alumina are studied, and the performances of the selected sorbents are tested in a closed-system TES device. The results are compared with those of raw and MgSO4-impregnated zeolite 13X. It is shown that the impregnated MgSO4 improves the overall TES performances of zeolite 13X and activated alumina. Compared to the raw host matrices, the impregnated MgSO4 remarkably accelerates the temperature-rising rate of zeolite 13X to about three times and improves the temperature lift of activated alumina by 32.5%. The experimental energy storage densities of MgSO4-impregnated zeolite 13X and activated alumina are 123.4 kWh m−3and 82.6 kWh m−3, respectively. The sorption temperature region of activated alumina is more aligned with the preferred hydration temperature of MgSO4 in comparison with zeolite 13X. The hydration characteristics of MgSO4 can resolve the solution leakage issue of open systems. Thermodynamic analysis is conducted to evaluate the performances of the TES device with different sorbents. It is found that entransy can be used to assess thermally and electrically driven TES systems reasonably

    Comparison of homogeneous and heterogeneous motorised traffic at signalised and two-way stop control single lane intersection

    Get PDF
    Results of a microscopic model of mixed motorised traffic consisting of short vehicles, (e.g. cars), and long vehicles, (taken to be double the length of the short vehicles), for an urban two-way single lane intersection are presented here. We model the intersection using both signalised and un-signalised stop control rules. The model allows for the detection of bottleneck activity in both homogenous and heterogeneous traffic conditions, and was validated by means of field data collected in Dublin, Ireland. The validated model was used to study the impact of inclusion of long vehicles on traffic performance in an urban environment. Traffic mix is, however, taken to be dominated by short vehicles overall, in argument with observed live data collected

    Development Of Twin-screw Steam Compressor with Water Sealing

    Get PDF

    Control of an IPMC soft actuator using adaptive full-order recursive terminal sliding mode

    Get PDF
    The ionic polymer metal composite (IPMC) actuator is a kind of soft actuator that can work for underwater applications. However, IPMC actuator control suffers from high nonlinearity due to the existence of inherent creep and hysteresis phenomena. Furthermore, for underwater applications, they are highly exposed to parametric uncertainties and external disturbances due to the inherent characteristics and working environment. Those factors significantly affect the positioning accuracy and reliability of IPMC actuators. Hence, feedback control techniques are vital in the control of IPMC actuators for suppressing the system uncertainty and external disturbance. In this paper, for the first time an adaptive full-order recursive terminal sliding-mode (AFORTSM) controller is proposed for the IPMC actuator to enhance the positioning accuracy and robustness against parametric uncertainties and external disturbances. The proposed controller incorporates an adaptive algorithm with terminal sliding mode method to release the need for any prerequisite bound of the disturbance. In addition, stability analysis proves that it can guarantee the tracking error to converge to zero in finite time in the presence of uncertainty and disturbance. Experiments are carried out on the IPMC actuator to verify the practical effectiveness of the AFORTSM controller in comparison with a conventional nonsingular terminal sliding mode (NTSM) controller in terms of smaller tracking error and faster disturbance rejection

    Enhanced Group Analysis and Exact Solutions of Variable Coefficient Semilinear Diffusion Equations with a Power Source

    Full text link
    A new approach to group classification problems and more general investigations on transformational properties of classes of differential equations is proposed. It is based on mappings between classes of differential equations, generated by families of point transformations. A class of variable coefficient (1+1)-dimensional semilinear reaction-diffusion equations of the general form f(x)ut=(g(x)ux)x+h(x)umf(x)u_t=(g(x)u_x)_x+h(x)u^m (m0,1m\ne0,1) is studied from the symmetry point of view in the framework of the approach proposed. The singular subclass of the equations with m=2m=2 is singled out. The group classifications of the entire class, the singular subclass and their images are performed with respect to both the corresponding (generalized extended) equivalence groups and all point transformations. The set of admissible transformations of the imaged class is exhaustively described in the general case m2m\ne2. The procedure of classification of nonclassical symmetries, which involves mappings between classes of differential equations, is discussed. Wide families of new exact solutions are also constructed for equations from the classes under consideration by the classical method of Lie reductions and by generation of new solutions from known ones for other equations with point transformations of different kinds (such as additional equivalence transformations and mappings between classes of equations).Comment: 40 pages, this is version published in Acta Applicanda Mathematica

    A zeolite 13X/magnesium sulfate–water sorption thermal energy storage device for domestic heating

    Get PDF
    A sorption thermal energy storage (TES) device for domestic heating is presented in this article. The TES device adopts the new design scenario with valve-less adsorber and separate reservoir to eliminate the large-diameter vacuum valve for vapor flow, which decreases the cost, reduces the vapor flow resistance, and improves the system reliability. The device is charged by the electric heater, which can add much flexibility to the building energy system as well as contribute to the valley filling and peak shaving from demand side management. The newly developed composite sorbent of zeolite 13X/MgSO4/ENG-TSA (expanded natural graphite treated with sulfuric acid) with the salt mass fraction of 15% in the zeolite 13X/MgSO4 mixture is tested and used in the TES device (denoted as XM15/ENG-TSA). Experimental results show that the TES device with XM15/ENG-TSA has the energy storage density of 120.3kWh∙m−3 at 250°C charging temperature and 25–90°C discharging temperature. The temperature lift is as high as 65–69°C with the adsorption and evaporating temperatures of 25°C. The impregnation of MgSO4 dramatically improves the temperature rising rate during the adsorption heat recovery process, but the specific energy storage capacity of XM15/ENG-TSA is similar to that of zeolite 13X/ENG-TSA. The effect of the impregnated MgSO4 suggests that MgSO4 can be used for low-temperature TES to relieve the self-hindrance of the hydration reaction

    Experimental investigation on a dual-mode thermochemical sorption energy storage system

    Get PDF
    A dual-mode seasonal solar thermochemical sorption energy storage system using working pair of expanded graphite/SrCl2-NH3 was constructed and investigated. Solar thermal energy is transformed into chemical bonds in summer, and the stored energy is released in the form of chemical reaction heat in winter. Two working modes are performed to produce heat with expected temperature according to the different ambient temperatures in winter. The direct heating supply mode is adopted at a relatively high ambient temperature. The effective energy storage density is higher than 700kJ/kg and the corresponding system COP is 0.41 when the heat output temperature and ambient temperature are 35oC and 15oC, respectively. The specific heating power increases with the decrease of heat output temperature for a given ambient temperature. The temperature-lift heating supply mode is adopted to upgrade the heat output temperature at a low ambient temperature below 0oC. It can produce heat with a temperature above 70 oC although the ambient temperature is as low as -15oC. It is desirable to further improve the system performance using low mass ratio and high global conversion. Experimental results showed the advanced dual-mode thermochemical sorption energy storage technology is feasible and effective for seasonal solar thermal energy storage
    corecore