1,394 research outputs found
Possible S-wave Dibaryons in SU(3) Chiral Quark Model
In the framework of the SU(3) chiral quark model, the wave baryon-baryon
bound states are investigated. It is found that according to the symmetry
character of the system and the contributions from chiral fields, there are
three types of bound states. The states of the first type, such as
and are deeply bound
dibaryon with narrow widths. The second type states, ,,
and are also bound states, but with broad widths.
, , and are third type states. They, like {\em d}, are weakly bound
only if the chiral fields can provide attraction between baryons.Comment: Latex files, 1 figur
A Comparative Study of Segmentation Algorithms in the Classification of Human Skin Burn Depth
A correct first assessment of a skin burn depth is essential as it determines a correct first burn treatment provided to the patients. The objective of this paper is to conduct a comparative study of the different segmentation algorithms for the classification of different burn depths. Eight different hybrid segmentation algorithms were studied on a skin burn dataset comprising skin burn images categorized into three burn classes by medical experts; superficial partial thickness burn (SPTB), deep partial thickness burn (DPTB) and full thickness burn (FTB). Different sequences of the algorithm were experimented as each algorithm was able to segment differently, leading to different segmentation in the final output. The performance of the segmentation algorithms was evaluated by calculating the number of correctly segmented images for each burn depth. The empirical results showed that the segmentation algorithm that was able to segment most of the burn depths had achieved 40.24%, 60.42% and 6.25% of correctly segmented image for SPTB, DPTB and FTB respectively. Most of the segmentation algorithms could not segment well for FTB images because of the different nature of the burn wounds as some of the FTB images contained dark brown and black colors. It can be concluded that a good segmentation algorithm is required to ensure that the representative features of each burn depth can be extracted to contribute to higher accuracy of classification of skin burn depth
Possible Dibaryons with Strangeness s=-5
In the framework of , the binding energy of the six quark system with
strangeness s=-5 is systematically investigated under the SU(3) chiral
constituent quark model. The single channel calculation with
spins S=0 and 3 and the coupled and channel
calculation with spins S=1 and 2 are considered, respectively. The results show
following observations: In the spin=0 case, is a bound dibaryon
with the binding energy being . In the S=1 case,
is also a bound dibaryon. Its binding energy is ranged from to . In the S=2 and S=3 cases, no evidence of bound dibaryons
are found. The phase shifts and scattering lengths in the S=0 and S=1 cases are
also given.Comment: 10 pages, late
Self-consistent Coulomb effects and charge distribution of quantum dot arrays
This paper considers the self-consistent Coulomb interaction within arrays of
self-assembled InAs quantum dots (QDs) which are embedded in a pn structure.
Strong emphasis is being put on the statistical occupation of the electronic QD
states which has to be solved self-consistently with the actual
three-dimensional potential distribution. A model which is based on a Green's
function formalism including screening effects is used to calculate the
interaction of QD carriers within an array of QDs, where screening due to the
inhomogeneous bulk charge distribution is taken into acount. We apply our model
to simulate capacitance-voltage (CV) characteristics of a pn structure with
embedded QDs. Different size distributions of QDs and ensembles of spatially
perodic and randomly distributed arrays of QDs are investigated.Comment: submitted to pr
Evidence for Unusual Dynamical Arrest Scenario in Short Ranged Colloidal Systems
Extensive molecular dynamics simulation studies of particles interacting via
a short ranged attractive square-well (SW) potential are reported. The
calculated loci of constant diffusion coefficient in the
temperature-packing fraction plane show a re-entrant behavior, i.e. an increase
of diffusivity on cooling, confirming an important part of the high
volume-fraction dynamical-arrest scenario earlier predicted by theory for
particles with short ranged potentials. The more efficient localization
mechanism induced by the short range bonding provides, on average, additional
free volume as compared to the hard-sphere case and results in faster dynamics.Comment: 4 pages, 3 figure
A framework for digital sunken relief generation based on 3D geometric models
Sunken relief is a special art form of sculpture whereby the depicted shapes are sunk into a given surface. This is traditionally created by laboriously carving materials such as stone. Sunken reliefs often utilize the engraved lines or strokes to strengthen the impressions of a 3D presence and to highlight the features which otherwise are unrevealed. In other types of reliefs, smooth surfaces and their shadows convey such information in a coherent manner. Existing methods for relief generation are focused on forming a smooth surface with a shallow depth which provides the presence of 3D figures. Such methods unfortunately do not help the art form of sunken reliefs as they omit the presence of feature lines. We propose a framework to produce sunken reliefs from a known 3D geometry, which transforms the 3D objects into three layers of input to incorporate the contour lines seamlessly with the smooth surfaces. The three input layers take the advantages of the geometric information and the visual cues to assist the relief generation. This framework alters existing techniques in line drawings and relief generation, and then combines them organically for this particular purpose
Genome-wide association study for Atopy and Allergic Rhinitis in a Singapore Chinese population
10.1371/journal.pone.0019719PLoS ONE65
A Comparative Study of the Classification of Skin Burn Depth in Human
A correct first evaluation of skin burn injury is essential as it is an important step in providing the first treatment to the patient by determining the burn depths. The objective of this paper is to conduct a comparative study of different types of classification algorithms on the classification of different burn depths by using an image mining approach. 20 classification algorithms were compared on a skin burn dataset comprising skin burn images categorized into three classes by medical experts. The dataset was evaluated using both a supplied test set and 10-fold cross validation methods. Empirical results showed that the best classification algorithms that were able to classify most of the burn depths using a supplied test set were Logistic, Simple Logistic, MultiClassClassifier, OneR, and LMT, with an average accuracy of 68.9% whereas for 10-fold cross validation evaluation, the best result was obtained through the Simple Logistic algorithm with an average accuracy of 73.2%. It can be concluded that Simple Logistic has the potential to provide the best classification for the degree of skin burn depth
- …