12 research outputs found

    Structure retrieval in liquid-phase electron scattering

    Get PDF
    Electron scattering on liquid samples has been enabled recently by the development of ultrathin liquid sheet technologies. The data treatment of liquid-phase electron scattering has been mostly reliant on methodologies developed for gas electron diffraction, in which theoretical inputs and empirical fittings are often needed to account for the atomic form factor and remove the inelastic scattering background. The accuracy and impact of these theoretical and empirical inputs has not been benchmarked for liquid-phase electron scattering data. In this work, we present an alternative data treatment method that requires neither theoretical inputs nor empirical fittings. The merits of this new method are illustrated through the retrieval of real-space molecular structure from experimental electron scattering patterns of liquid water, carbon tetrachloride, chloroform, and dichloromethane

    Structure retrieval in liquid-phase electron scattering

    Get PDF
    Electron scattering on liquid samples has been enabled recently by the development of ultrathin liquid sheet technologies. The data treatment of liquid-phase electron scattering has been mostly reliant on methodologies developed for gas electron diffraction, in which theoretical inputs and empirical fittings are often needed to account for the atomic form factor and remove the inelastic scattering background. In this work, we present an alternative data treatment method that is able to retrieve the radial distribution of all the charged particle pairs without the need of either theoretical inputs or empirical fittings. The merits of this new method are illustrated through the retrieval of real-space molecular structure from experimental electron scattering patterns of liquid water, carbon tetrachloride, chloroform, and dichloromethane. Shown here is the arXiv version

    Mental Ability and Psychological Work Performance in Chinese Workers

    No full text

    Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay

    No full text
    The paper presents the results of experimental studies of the temperature dependence of a microfibre coupler (MFC) with a waist diameter of ~4 μm covered with a layer of liquid crystal (LC) material. The microfiber coupler is fabricated by fusing together and tapering of two standard telecom fibers using a microheater brushing technique, followed by partially embedding the structure in a low-refractive index UV curable polymer (Efiron PC-363) for stability and later by placing a thin heated LC layer over the polymer-free uniform taper waist region. The temperature dependence of the embedded in polymer MFC sensor before the application of the LC layer demonstrates a redshift of the coupler’s spectrum with an average sensitivity of ~0.5 nm/°C in the temperature range of 14-70 °C. The application of the LC overlay increases the average temperature sensitivity to ~0.7 nm/°C. The demonstrated device offers several advantages such as ease of fabrication and light coupling, the potential for better stability and the possibility of electric field tuning for realizing temperature, electric field, bio-, chemical sensors and tunable add-drop filters for fiber communication systems. Further work is ongoing to explore various tuning mechanisms of the MFC spectrum
    corecore