1,741 research outputs found

    A cumulus project: design and implementation

    Get PDF
    The Cloud computing becomes an innovative computing paradigm, which aims to provide reliable, customized and QoS guaranteed computing infrastructures for users. This paper presents our early experience of Cloud computing based on the Cumulus project for compute centers. In this paper, we introduce the Cumulus project with its various aspects, such as design pattern, infrastructure, and middleware

    Re-Temp: Relation-Aware Temporal Representation Learning for Temporal Knowledge Graph Completion

    Full text link
    Temporal Knowledge Graph Completion (TKGC) under the extrapolation setting aims to predict the missing entity from a fact in the future, posing a challenge that aligns more closely with real-world prediction problems. Existing research mostly encodes entities and relations using sequential graph neural networks applied to recent snapshots. However, these approaches tend to overlook the ability to skip irrelevant snapshots according to entity-related relations in the query and disregard the importance of explicit temporal information. To address this, we propose our model, Re-Temp (Relation-Aware Temporal Representation Learning), which leverages explicit temporal embedding as input and incorporates skip information flow after each timestamp to skip unnecessary information for prediction. Additionally, we introduce a two-phase forward propagation method to prevent information leakage. Through the evaluation on six TKGC (extrapolation) datasets, we demonstrate that our model outperforms all eight recent state-of-the-art models by a significant margin.Comment: Findings of EMNLP 202

    Graph Neural Networks for Natural Language Processing

    Get PDF
    By constructing graph-structured data from the input data, Graph Neural Network (GNN) enhances the performance of numerous Natural Language Processing (NLP) tasks. In this thesis, we mainly focus on two aspects of NLP: text classification and knowledge graph completion. TextGCN shows excellent performance in text classification by leveraging the graph structure of the entire corpus without using any external resources, especially under a limited labelled data setting. Two questions are explored: (1) Under the transductive semi-supervised setting, how to utilize the documents better and learn the complex relationship between nodes. (2) How to transform TextGCN into an inductive model and also reduce the time and space complexity? In detail, firstly, a comprehensive analysis was conducted on TextGCN and its variants. Secondly, we propose ME-GCN, a novel method for text classification that utilizes multi-dimensional edge features in a graph neural network (GNN) for the first time. It uses the corpus-trained word and document-based edge features for semi-supervised classification and has been shown to be effective through experiments on benchmark datasets under the limited labelled data setting. Thirdly, InducT-GCN, an inductive framework for GCN-based text classification that does not require additional resources is introduced. The framework introduces a novel approach to make transductive GCN-based text classification models inductive, improving performance and reducing time and space complexity. Most existing work for Temporal Knowledge Graph Completion (TKGC) overlooks the significance of explicit temporal information and fails to skip irrelevant snapshots based on the entity-related relation in the query. To address this, we introduced Re-Temp (Relation-Aware Temporal Representation Learning), a model that leverages explicit temporal embedding and a skip information flow after each timestamp to eliminate unnecessary information for prediction

    Structural basis for the extended CAP-Gly domains of p150(glued) binding to microtubules and the implication for tubulin dynamics

    No full text
    p150(glued) belongs to a group of proteins accumulating at microtubule plus ends (+TIPs). It plays a key role in initiating retrograde transport by recruiting and tethering endosomes and dynein to microtubules. p150(glued) contains an N-terminal microtubule-binding cytoskeleton-associated protein glycine-rich (CAP-Gly) domain that accelerates tubulin polymerization. Although this copolymerization is well-studied using light microscopic techniques, structural consequences of this interaction are elusive. Here, using electron-microscopic and spectroscopic approaches, we provide a detailed structural view of p150(glued) CAP-Gly binding to microtubules and tubulin. Cryo-EM 3D reconstructions of p150(glued)-CAP-Gly complexed with microtubules revealed the recognition of the microtubule surface, including tubulin C-terminal tails by CAP-Gly. These binding surfaces differ from other retrograde initiation proteins like EB1 or dynein, which could facilitate the simultaneous attachment of all accessory components. Furthermore, the CAP-Gly domain, with its basic extensions, facilitates lateral and longitudinal interactions of tubulin molecules by covering the tubulin acidic tails. This shielding effect of CAP-Gly and its basic extensions may provide a molecular basis of the roles of p150(glued) in microtubule dynamics

    Cloud Computing: A Perspective Study

    Get PDF
    The Cloud computing emerges as a new computing paradigm which aims to provide reliable, customized and QoS guaranteed dynamic computing environments for end-users. In this paper, we study the Cloud computing paradigm from various aspects, such as definitions, distinct features, and enabling technologies. This paper brings an introductional review on the Cloud computing and provide the state-of-the-art of Cloud computing technologies

    Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific sector of Arctic Ocean during 1982-2009

    Get PDF
    SSM/I sea ice concentration and CLARA black-sky composite albedo were used to estimate sea ice albedo in the region 70 degrees N-82 degrees N, 130 degrees W-180 degrees W. The long-term trends and seasonal evolutions of ice concentration, composite albedo, and ice albedo were then obtained. In July-August 1982-2009, the linear trend of the composite albedo and the ice albedo was -0.069 and -0.046 units per decade, respectively. During 1 June to 19 August, melting of sea ice resulted in an increase of solar heat input to the ice-ocean system by 282 MJ.m(-2) from 1982 to 2009. However, because of the counter-balancing effects of the loss of sea ice area and the enhanced ice surface melting, the trend of solar heat input to the ice was insignificant. The summer evolution of ice albedo matched the ice surface melting and ponding well at basin scale. The ice albedo showed a large difference between the multiyear and first-year ice because the latter melted completely by the end of a melt season. At the SHEBA geolocations, a distinct change in the ice albedo has occurred since 2007, because most of the multiyear ice has been replaced by first-year ice. A positive polarity in the Arctic Dipole Anomaly could be partly responsible for the rapid loss of summer ice within the study region in the recent years by bringing warmer air masses from the south and advecting more ice toward the north. Both these effects would enhance ice-albedo feedback.Peer reviewe

    Electrical conductance at initial stage in epitaxial growth of Pb on modified Si(111) surface

    Full text link
    The electrical conductance and RHEED intensities as a function of the coverage have been measured during Pb depositions at 105 K on Si(111)-(6x6)Au with up to 4.2 ML of annealed Pb. The experiments show the strong influence of used substrates on the behavior of the conductance during the epitaxy of Pb atoms, especially for very initial stage of growth. Oscillations of the conductance during the layer-by-layer growth are correlated with RHEED intensity oscillations. The analysis of the conductance behavior is made according to the theory described by Trivedi and Aschcroft (Phys.Rev.B 38,12298 (1988)).Comment: 5 pages, 3 figures. Surf. Sci. - accepte

    Quantum Theory Approach for Neutron Single and Double-Slit Diffraction

    Full text link
    We provide a quantum approach description of neutron single and double-slit diffraction, with specific attention to the cold neutron diffraction (λ20\lambda \approx 20\AA) carried out by Zeilinger et al. in 1988. We find the theoretical results are good agreement with experimental data.Comment: 10 page
    corecore