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Abstract

Neural networks have been playing an important role in natural language processing, and

graph neural network is without exception. By constructing graph-structured data from the

input data, Graph Neural Network (GNN) enhances the performance of numerous Natural

Language Processing (NLP) tasks. In this thesis, we mainly focus on two aspects of NLP:

text classification and knowledge graph completion.

TextGCN shows excellent performance in text classification by leveraging the graph

structure of the entire corpus without using any external resources, especially under a limited

labelled data setting. However, it only works under the transductive semi-supervised setting.

To retain the advantage of learning global structure information of TextGCN, two different

ways are explored: (1) Under the transductive semi-supervised setting, how to utilize the

documents better and learn the complex relationship between nodes. (2) How to transform

TextGCN into an inductive model and also reduce the time and space complexity?

In detail, firstly, a comprehensive analysis was conducted on TextGCN and its variants,

including a comparison of accuracy performance with different graph constructions and

GCN layer stacks, across five full corpus and nine limited training environment benchmarks,

including low-resource languages. Secondly, we propose ME-GCN, a novel method for text

classification that utilizes multi-dimensional edge features in a graph neural network (GNN)

for the first time. It uses the corpus-trained word and document-based edge features for

semi-supervised classification and has been shown to be effective through experiments on

benchmark datasets under the limited labelled data setting. Thirdly, InducT-GCN, an inductive

framework for GCN-based text classification that does not require additional resources is

introduced. It has been compared with state-of-the-art models using five benchmark datasets

in limited labelled data settings and outperforms them on four of them, even surpassing some

transductive baselines that use external resources. The framework introduces a novel approach
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x ABSTRACT

to make transductive GCN-based text classification models inductive, improving performance

and reducing time and space complexity.

Temporal Knowledge Graph Completion (TKGC) under the extrapolation setting, aims to

predict missing entities in a query (Subject Entity, Relation, ?, Timestamp) or (?, Relation,

Object Entity, Timestamp). Most existing work applies a sequential/recurrent graph neural

network to the snapshots in history to capture the implicit sequential temporal information.

However, existing research often overlooks the significance of explicit temporal information

and fails to skip irrelevant snapshots based on the entity-related relation in the query. To

address this, we introduced Re-Temp (Relation-Aware Temporal Representation Learning),

a model that leverages explicit temporal embedding and a skip information flow after each

timestamp to eliminate unnecessary information for prediction. The model outperforms recent

state-of-the-art models on six TKGC (extrapolation) datasets.
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CHAPTER 1

Introduction

1.1 Graph Neural Network for Natural Language Processing

Natural Language Processing (NLP), as the name shows, is a field that focuses on the

interactions between computers and humans through natural language(Nadkarni et al., 2011).

The development of NLP went through three periods:

(1) Symbolic NLP: Symbolic NLP is built on a set of rules. The computer will follow

the hand-craft rules to process the document and output the result. For example, the

chatbot ELIZA(Weizenbaum, 1966) provided generic responses, such as "Why do

you say your head hurts?" for "My head hurts" based on the rules.

(2) Statistical NLP: With the help of machine learning and statistics, NLP emerged in

the Statistical NLP era. For example, IBM built the first machine translation model

CANDIDE(DellaPietra and DellaPietra, 1994).

(3) Neural NLP: The advancement in neural network research has driven the advance-

ment of Natural Language Processing. A multitude of deep learning techniques have

been utilized in NLP tasks, including convolutional neural networks(CNN)(LeCun

et al., 1998), recurrent neural networks(RNN)(Rumelhart et al., 1985), and tranform-

ers(Vaswani et al., 2017).

Graph Neural Networks (GNNs), a subclass of neural networks that specialize in processing

graph-structured data, have recently been utilized for various Natural Language Processing

(NLP) applications(Wu et al., 2023). The versatility of GNNs lies in their ability to con-

struct one or multiple graphs based on the input data, leading to their effectiveness in a
1
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broad spectrum of NLP tasks, including but not limited to machine translation(Bastings et

al., 2017), question answering(Hu et al., 2019a), dialogue system(Hu et al., 2019c), text

classification(Yao et al., 2019), information extraction(Luo and Zhao, 2020), and knowledge

graph completion(Schlichtkrull et al., 2018).

We focus on text classification and knowledge graph completion in this thesis.
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1.2 Graph Neural Network for Text Classification

FIGURE 1.1. Schematic of TextGCN, the figure is from (Yao et al., 2019).

TextGCN(Yao et al., 2019) which builds a corpus-level graph on the whole corpus and applies

graph convolutional networks(GCN)(Kipf and Welling, 2017) for model learning, achieves

state-of-the-art performance in text classification without using external resources.

In their work, a graph is composed of three types of nodes: training set document nodes,

test set document nodes and word nodes. Two types of edges are constructed: word-word

edge with PMI(Aji and Kaimal, 2012) value and word-document edge with TF-IDF value. A

two-layer GCN model is applied to the constructed graph, the representations learned on the

training set document nodes are used for loss calculation and model training, while those on

the test set document nodes are used for inference. The overall structure of TextGCN shows

in Figure 1.1.

TextGCN shows great performance by learning the structural information of the entire corpus.

The words can serve as bridges to connect training document nodes and test document nodes.

However, TextGCN only works under the transductive semi-supervised setting, which is

not practical in the real world. Meanwhile, with the setting of transductive semi-supervised

learning, TextGCN doesn’t exploit the documents well. Therefore, our research questions are:
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• Why does TextGCN perform well on text classification tasks? How do graph

construction and model learning help in model learning? Are there any other variants

of TextGCN that can achieve better performance? [Chapter 3]

• In terms of transductive semi-supervised text classification tasks, how does a

corpus-level graph utilize the document better and learn more complex inform-

ation?[Chapter 4]

• How to make a TextGCN model or the following models inductive? [Chapter 5]
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1.3 Graph Neural Network for Knowledge Graph

Completion

A knowledge graph(KG), represented as a set of facts represented by triplets (subject entity,

relation, object entity), is a type of graph-structured data. The entities serve as nodes and

relations serve as edges in a knowledge graph. A knowledge graph completion task aims to

predict the missing entity in a query (subject entity, relation, ?) or (?, relation, object entity),

and this is a fundamental task in the knowledge graph.

FIGURE 1.2. An example of TKG from (Zhu et al., 2021).

The temporal knowledge graph(TKG), which introduces an extra timestamp into the fact, has

become more active in recent years. The fact in the temporal knowledge graph is a quadruplet

like (subject entity, relation, object entity, timestamp). A temporal knowledge graph can be

represented by one hypergraph where nodes are entities, and hyperedges are relations with

timestamps. An example from (Zhu et al., 2021) can be found in Figure 1.2.



6 1 INTRODUCTION

FIGURE 1.3. Another example of TKG from (Jin et al., 2020).

Meanwhile, a knowledge graph can also be represented by a sequence of snapshots, and each

snapshot represents the graph at one timestamp. An example from (Jin et al., 2020) can be

found in Figure 1.3.

There are two settings for temporal knowledge graph completion: interpolation and extra-

polation. Interpolation means completing the missing queries in history, while extrapolation

focuses on making predictions about the future. Temporal knowledge graph completion under

extrapolation is more challenging and has more realistic applications such as early warning of

some political conflict(Li et al., 2021b).

A typical sequential/recurrent graph neural network can work as the encoder for encoding

the representation and a score function can work as the decoder to calculate the validity of

each fact(Jin et al., 2020; Li et al., 2021b; Li et al., 2022a; Li et al., 2022b). However, the

sequential GNN can only capture implicit sequential temporal information and consider all

the snapshots in history, which is insufficient for this task. Our research question about GNN

for knowledge graph completion is:
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• Except for implicit sequential temporal information, what other information should

an encoder capture in the temporal knowledge graph completion task?[Chapter 6]
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1.4 Contributions

The contribution of this these can be summarised as follows:

• A literature review on GNN for text classification and knowledge graph completion

is in [Chapter 2]. Corpus-level and document-level graph text classification models

are summarised and analysed. Both static and temporal knowledge graph completion

models are examined under the view of the encoder-decoder framework.

• In [Chapter 3], a comprehensive analysis is conducted on TextGCN and its variants.

The role of graph construction and learning in GCN-based text classification is

analyzed across five full corpus environment benchmarks and nine limited training

environment benchmarks, including low-resource languages. A comparative analysis

of accuracy performance is done with different node and edge constructions in GCN.

The performance of GCN-based Text Classification is also evaluated with different

variants of GCN layer stacks.

• In [Chapter 4], ME-GCN is proposed, which is the first application of multi-

dimensional edge features on GNN for text classification. ME-GCN uses the

corpus-trained multi-dimensional word and document-based edge features for semi-

supervised text classification. Experiments on benchmark datasets demonstrate the

effectiveness of ME-GCN.

• InducT-GCN is introduced in [Chapter 5]. It is the first inductive corpus-level GCN-

based text classification framework without extra resources to our best knowledge.

Comparison with five benchmark datasets under limited labelled data settings shows

that InducT-GCN outperforms on four of them, even surpassing some transductive

baselines that use external resources. A new approach to make transductive GCN-

based text classification models inductive is introduced, which improves performance

and reduces time and space complexity.

• In [Chapter 6], a temporal knowledge graph completion model Re-Temp is intro-

duced, which considers both explicit and implicit temporal information, improving

the ability to skip irrelevant snapshots. Comparison with eight state-of-the-art
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baselines on six public TKGC datasets under extrapolation setting shows that Re-

Temp greatly outperforms all baselines. A new two-phase forward propagation

method is proposed to prevent information leakage. A case study and statistical

analysis demonstrate the different natures of each dataset.
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1.5 Outline

The outline of this thesis shows as follows:

• [Chapter 2] introduces the basic knowledge about GNN and how GNN applies in

text classification and knowledge graph, and analyses the drawbacks of the existing

work.

• [Chapter 3] conducts a preliminary analysis on TextGCN, which is a fundamental

graph neural network model on text classification. Ablation tests are conveyed on

the TextGCN and its variants with different datasets.

• [Chapter 4] builds a multi-dimensional edge-embedded graph convolutional net-

work, ME-GCN, for transductive semi-supervised text classification tasks. The

model is tested under the limited labelled data settings and we conduct empirical

experiments and statistical analysis to validate the performance of our method.

• [Chapter 5] comes up with a framework, InducT-GCN, for text classification in an

inductive learning way using a corpus-level graph neural network. The framework

can work with GCN-based models like GCN and SGC. Experiments are conducted

under both limited labelled data and whole dataset settings to show the effectiveness

of the proposed framework.

• [Chapter 6] builds a relation-aware temporal representation learning model (Re-

Temp) for temporal knowledge graph completion. Experiments on several temporal

knowledge graph completion are conducted to show the superiority of the proposed

model. In addition, statistical analysis of the datasets is also carried out.

• [Chapter 7] summarizes the key findings and arguments presented in the previous

chapters and draws conclusions based on the evidence presented. Also, it suggests

some areas for further research and exploration based on the results of the studies in

this thesis.

• [Appendix A] introduces an abusive language detection model which also adopts a

graph neural network to extract user linguistic behaviour information.



CHAPTER 2

Literature review

2.1 Overview of Literature Review

This chapter introduces previous works on applying graph neural networks in text classification

and knowledge graph completion.

2.1.1 Summary of GNN for Text Classification

There are two main streams of applying graph neural networks to text classification: (1)

build one graph for the whole corpus and transform the text classification task into a node

classification task. (2) build a graph for each document, then learn the graph representation

for the classification task. Although the main focus of this thesis is on the former one, we still

review both corpus-level and document-level GNN for text classification in this chapter. The

overview of all GNN models for text classification is shown in Figure 2.1. Section 2.2 and

Section 2.3 introduce the corpus-level GNN and document-level GNN respectively.

2.1.2 Summary of GNN for Knowledge Graph Completion

Section 2.4 summarises the previous works of knowledge graph completion and how the

graph neural network helps in knowledge graph reasoning, in both static knowledge graph

completion and temporal knowledge graph completion tasks.

11
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Corpus-level
Graph

Word and
Document

nodes

PMI+TF-
IDF

TextGCN; SGC;
S2GC; NMGC;

TG-Transformer;
BertGCN

Multi-Graph TensorGCN

Inductive
Learning

HeteGCN;
T-VGAE

Document
Nodes

knn-GCN;
TextGTL

Word Nodes VGCN-BERT

Extra Topic
Nodes

Single Layer
topic nodes HGAT; STGCN

Multi-layer
Topic Node DHTG

Document-
Level Graph

Local word
consecutive

Simple
consecutive

graph
models

Text-Level-GNN;
MPAD; TextING

Advanced
graph

models

MLGNN;
DADGNN;

TextSSL
Global

Word Co-
occurrence

Only co-
occurrence DAGNN

With Extra
Edges ReGNN; GFN;

Other Word
Graphs

HyperGAT;
IGCN; GTNT;

FIGURE 2.1. Graph neural network methods for text classification.
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2.2 Corpus-level GNN for Text Classification

We define a corpus-level Graph Neural Network as “constructing a graph to represent the

whole corpus", thus, only one or several graphs will be built for the given corpus. We

categorize Corpus-level GNN into four subcategories based on the types of nodes shown in

the graph.

2.2.1 Document and Word Nodes as a Graph

Most corpus-level graphs include word nodes and document nodes and there are word-

document edges and word-word edges. By applying K(normally K=2 or 3) layer GNN, word

nodes will serve as a bridge to propagate the information from one document node to another.

2.2.1.1 PMI and TF-IDF as graph edges: TextGCN, SGC, S2GC, NMGC,

TG-Transformer, BertGCN

TextGCN Yao et al. (2019) builds a corpus-level graph with training document nodes, test

document nodes and word nodes. Before constructing the graph, a common preprocessing

method(Kim, 2014) has been applied and words shown fewer than 5 times or in NLTK(Bird

et al., 2009) stopwords list have been removed. The edge value between the document node

and the word node is TF-IDF and that between the word nodes is PMI. The adjacency matrix

of this graph shows as follows.

Aij =



PMI(i, j) i, j are words,PMI(i, j) > 0

TF-IDFi,j i is document, j is word

1 i = j

0 otherwise

(2.1)

A two-layer GCN is applied to the graph, and the dimension of the second layer output equals

to the number of classes in the dataset. Formally, the forward propagation of TextGCN shows
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as:

Z = softmax(Ã(ReLU(ÃXW (0)))W (1)) (2.2)

where Ã is the normalized adjacency of A and X is one-hot embedding. W0 and W1 are

learnable parameters of the model. The representation on training documents is used to

calculate the loss and that on test documents is for prediction. TextGCN is the first work that

treats a text classification task as a node classification problem by constructing a corpus-level

graph and has inspired many following works.

Based on TextGCN, several works follow the same graph construction method and node

initialization but apply different graph propagation models.

SGC To make GCN efficient, SGC(Simple Graph Convolution)(Wu et al., 2019a) removes

the nonlinear activation function in GCN layers, therefore, the K-layer propagation of SGC

shows as:

Z = softmax(Ã...(Ã(ÃXW (0))W (1))...W (K)) (2.3)

which can be reparameterized into

Z = softmax(ÃKXW ) (2.4)

and K is 2 when applied to text classification tasks. With a smaller number of parameters

and only one feedforward layer, SGC saves computation time and resources while improving

performance.

S2GC To solve the oversmoothing issues in GCN, Zhu and Koniusz (2021) propose Simple

Spectral Graph Convolution(S2GC) which includes self-loops using Markov Diffusion Kernel.

The output of S2GC is calculated as:

Z = softmax(
1

K

K∑
k=0

ÃkXW ) (2.5)

and can be generalized into:

Z = softmax(
1

K

K∑
k=0

((1− α)ÃkX + αX)W ) (2.6)
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Similarly, K = 2 on text classification tasks and α denotes the trade-off between self-

information of the node and consecutive neighbourhood information. S2GC can also be

viewed as introducing skip connections into GCN.

NMGC Other than using the sum of each GCN layer in S2GC, NMGC(Lei et al., 2021)

applies min pooling using the Multi-hop neighbour Information Fusion (MIF) operator to

address oversmoothing problems. A MIF function is defined as:

MIF(K) = min(ÃXW, Ã2XW, ..., ÃKXW ) (2.7)

NMGC-K firstly applies a MIF(K) layer then a GCN layer and K is 2 or 3. For example,

when K = 3, the output is:

Z = softmax(Ã(ReLU min(ÃXW (0), Ã2XW (0), Ã3XW (0)))W (1)) (2.8)

NMGC can also be treated as a skip-connection in Graph Neural Networks which makes the

shallow layer of GNN contribute to the final representation directly.

TG-Transformer TextGCN treats the document nodes and word nodes as the same type

of nodes during propagation, and to introduce heterogeneity into the TextGCN graph, TG-

Transformer(Text Graph Transformer)(Zhang and Zhang, 2020) adopts two sets of weights for

document nodes and word nodes respectively. To cope with a large corpus graph, subgraphs

are sampled from the TextGCN graph using PageRank algorithm(Page et al., 1999). The

input embedding is the sum of three types of embedding: pretrained GloVe embedding, node

type embedding, and Weisfeiler-Lehman structural encoding(Niepert et al., 2016). During

propagation, self-attention(Vaswani et al., 2017) with graph residual(Zhang and Meng, 2019)

is applied.

BertGCN To combine BERT(Kenton and Toutanova, 2019) and TextGCN, BertGCN(Lin et

al., 2021) enhances TextGCN by replacing the document node initialization with the BERT

[CLS] output of each epoch and replacing the word input vector with zeros. BertGCN trains

BERT and TextGCN jointly by interpolating the output of TextGCN and BERT:

Z = λZGCN + (1− λ)ZBERT (2.9)
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where λ is the trade-off factor. To optimize the memory during training, a memory bank is

used to track the document input and a smaller learning rate is set to BERT module to remain

consistent with the memory bank. BertGCN shows that with the help of TextGCN, BERT can

achieve better performance.

2.2.1.2 Multi-Graphs: TensorGCN

TensorGCN Instead of constructing a single corpus-level graph, TensorGCN(Liu et al.,

2020) builds three independent graphs: Semantic-based graph, Syntactic-based graph, and

Sequential-based graph to incorporate semantic, syntactic and sequential information respect-

ively and combines them into a tensor graph.

Three graphs share the same set of TF-IDF values for the word-document edge but different

values for word-word edges. Semantic-based graph extracts the semantic features from a

trained Long short-term memory(LSTM)(Hochreiter and Schmidhuber, 1997) model and

connects the words sharing high similarity. The syntactic-based graph uses Stanford CoreNLP

parser(Manning et al., 2014) and constructs edges between words when they have a larger

probability of having a dependency relation. For the Sequential-based graph, PMI value is

applied as TextGCN does.

The propagation includes intra-graph propagation and inter-graph propagation. The model

first applies the GCN layer on three graphs separately as intra-graph propagation. Then the

same nodes on three graphs are treated as a virtual graph and another GCN layer is applied as

inter-graph propagation.

2.2.1.3 Making TextGCN Inductive: HeteGCN, T-VGAE

HeteGCN HeteGCN(Heterogeneous GCN)(Ragesh et al., 2021) optimizes the TextGCN

by decomposing the TextGCN undirected graph into several directed subgraphs. Several

subgraphs from TextGCN graph are combined sequentially as different layers: feature graph

(word-word graph), feature-document graph (word-document graph), and document-feature

graph (document-word graph). Different combinations were tested and the best model is
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shown as:

Z = softmax(Aw−d(ReLU(Aw−wXwW
(0)))W (1)) (2.10)

where Aw−w and Aw−d show the adjacency matrix for the word-word subgraph and word-

document subgraph. Since the input of HeteGCN is the word node embeddings without using

document nodes, it can also work in an inductive way while the previous corpus-level graph

text classification models are all transductive models.

T-VGAE T-VGAE(Topic Variational Graph Auto-Encoder)(Xie et al., 2021) applies Vari-

ational Graph Auto-Encoder on the latent topic of each document to make the model inductive.

A vocabulary graph Av which connects the words using PMI values is constructed while each

document is represented using the TF-IDF vector. All the document vectors are stacked into a

matrix which can also be treated as a bipartite graph Ad. Two graph auto-encoder models are

applied on Av and Ad respectively. The overall workflow shows as:

Zv = EncoderGCN(Av, Xv) (2.11)

Zd = EncoderUDMP (Ad, Zv) (2.12)

A∗
v = Decoder(Zv) (2.13)

A∗
d = Decoder(Zd, Zv) (2.14)

where Xv is an Identity Matrix. The EncoderGCN and the decoders are applied following

V GAE(Kipf and Welling, 2016) while EncoderUDMP is an unidirectional message passing

variant of EncoderGCN . The training objective is minimising the reconstruction error and Zd

is used for the classification task.

2.2.2 Document Nodes as a Graph

To show the global structure of the corpus directly, some models only adopt document nodes

in the non-heterogeneous graph.
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knn-GCN (Benamira et al., 2019) constructs a k–nearest-neighbours graph by connecting

the documents with their K nearest neighbours using Euclidean distances of the embedding

of each document. The embedding is generated in an unsupervised way: either using the

mean of pretrained GloVe word vectors or applying LDA(Blei et al., 2003). Both GCN and

Attention-based GNN(Thekumparampil et al., 2018) are used as the graph model.

TextGTL Similar to TensorGCN, TextGTL(Text-oriented Graph-based Transductive Learn-

ing)(Li et al., 2021a) constructs three different document graphs: Semantics Text Graph,

Syntax Text Graph, and Context Text Graph while all the graphs are non-heterogeneous.

Semantics Text Graph uses Generalized Canonical Correlation Analysis(Bach and Jordan,

2002) and trains a classifier to determine the edge values between two document nodes.

Syntax Text Graph uses the Stanford CoreNLP dependency parser(Manning et al., 2014) to

construct units and also trains a classifier. Context Text Graph defines the edge values by

summing up the PMI values of the overlapping words in two documents. Two GCN layers

are applied and the output of each graph is mixed as the output of this layer and input for the

next layer for all three graphs:

H(1) = σ(AH(0)W (0)) (2.15)

H(2) = σ(A[H(1)
sem||H(1)

syn||H(1)
seq]W

(1)) (2.16)

Z = Poolingmean(H
(2)
sem, H

(2)
syn, H

(2)
seq) (2.17)

where H(0) is the TF-IDF vector of the documents. Data augmentation with super nodes is

also applied in TextGTL to strengthen the information in graph models.

2.2.3 Word Nodes as a Graph

By neglecting the document nodes in the graph, a graph with only word nodes shows good

performance in deriving the graph-based embedding and is used for downstream tasks. Since

no document nodes are included, this method can be easily adapted as an inductive learning

model.
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VGCN-BERT VGCN-BERT(Lu et al., 2020) enhances the input embedding of BERT by

concatenating it with the graph embedding. It first constructs a vocabulary graph and uses

PMI as the edge value. A variant of the GCN layer called VGCN(Vocabulary GCN) is applied

to derive the graph word embedding:

XGraph = ReLU(XBERTAW
(0))W (1) (2.18)

where BERT embedding is used as the input. The graph word embeddings are concatenated

with BERT embedding and fed into the BERT as extra information.

2.2.4 Extra Topic Nodes in the Graph

Topic information of each document can also provide extra information in corpus-level graph

neural networks. Several models also include topic nodes in the graph.

2.2.4.1 Single Layer Topic nodes: HGAT, STGCN

HGAT HGAT(Heterogeneous GAT)(Linmei et al., 2019) applies LDA(Blei et al., 2003) to

extract topic information for each document, top P topics with the largest probabilities are

selected as connected with the document. Instead of using the words directly, to utilize the

external knowledge HGAT applies the entity linking tool TAGME1 to identify the entities in

the document and connects them. The semantic similarity between entities using pretrained

Word2vec with threshold is used to define the connectedness between entity nodes. Since

the graph is a heterogeneous graph, a HIN (heterogeneous information network) model is

implemented which propagates solely on each sub-graphs depending on the type of node.

An HGAT model is applied by considering type-level attention and node-level attention. For

a given node, the type-level attention learns the weights of different types of neighbouring

nodes while node-level attention captures the importance of different neighbouring nodes

when ignoring the type. By using the dual attention mechanism, HGAT can capture the

information of type and node at the same time.

1https://sobigdata.d4science.org/group/tagme/
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STGCN In terms of short text classification, STGCN(Short-Text GCN)(Ye et al., 2020)

applies BTM(Yan et al., 2013) to get topic information to avoid the data sparsity problem

from LDA. The graph is constructed following TextGCN while extra topic nodes are included.

The edge values of word-topic and document-topic are from BTM and a classical two-layer

GCN is applied. The word embeddings learned from STGCN are concatenated with BERT

embeddings and a bi-LSTM model is applied for final prediction.

2.2.4.2 Multi-layer Topic Nodes: DHTG

DHTG To capture different levels of information, DHTG(Dynamic Hierarchical Topic

Graph)(Wang et al., 2020) introduces hierarchical topic-level nodes in the graph from fine-

grain to coarse. Poisson gamma belief network (PGBN)(Zhou et al., 2015) is used as a

probabilistic deep topic model. The first-layer topics are from the combination of words,

while deeper layers are generated by previous layers’ topics with the weights of PGBN, and

the weights serve as the edge values of each layer of topics. For the topics on the same layer,

the cosine similarity is chosen as the edge value. A two-layer GCN is applied and the model

is learned jointly with PGBN, which makes the edge of the topics dynamic.

2.2.5 Critical Analysis

Compared with sequential models like CNN and LSTM, corpus-level GNN is able to capture

the global corpus structure information with word nodes as bridges between document nodes

and shows great performance without using external resources like pretrained embedding or

pretrained model. However, the improvement in performance is marginal when pretrained

embedding is included. Another issue is that most corpus-level GNN is transductive learning

which is not applicable in the real world. Meanwhile, constructing the whole corpus into a

graph requires large memory space especially when the dataset is large.

More future work can be focused on the following aspects:

• Graph Model: Advanced graph models can be explored, e.g. more heterogeneous

graph models on word and document graphs.
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• Edge Construction: More dynamic corpus-level graph edge construction methods

can be explored.

• Inductive Learning: Inductive corpus-level graph models can be explored to make

the model applicable in the real world.

The comparison of Corpus-level GNN for text classification is shown in Table 2.1.

TABLE 2.1. Corpus-level GNN Models Detailed Comparison on whether
using external resources, how to construct the edge and node input, and
whether transductive learning or inductive learning. GloVe and Word2vec are
pretrained if not specified. “emb sim” is short for “embedding similarity”,
“dep graph” is short “dependency graph”.

Model external edge construction node initialization learning
TextGCN X pmi, tfidf one-hot transductive
SGC X pmi, tfidf one-hot transductive
S2GC X pmi, tfidf one-hot transductive
NMGC X pmi, tfidf one-hot transductive
TG-transformer Glove pmi, tfidf Glove transductive
BERTGCN BERT pmi, tfidf word: BERT emb

doc: 0
transductive

TensorGCN Glove,
CoreNLP

emb sim, dep graph,
pmi, tfidf

one-hot transductive

HeteGCN X pmi, tfidf one-hot inductive
T-VGAE X pmi one-hot inductive
VGCN-BERT BERT pmi BERT emb transductive
knn-GCN GloVe emb sim GloVe transductive
TextGTL CoreNLP dep graph, pmi tfidf vectors transductive
HGAT TAGME,

Word2vec
LDA, entity link,
emb sim

Word2vec, tf-idf,
LDA

transductive

STGCN BERT pmi, tfidf, BTM BERT emb transductive
DHTG X PGBN, pmi, tfidf one-hot transductive
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2.3 Document-level GNN for Text Classification

By constructing the graph based on each document, a graph classification model can be used

as a text classification model. Since each document is represented by one graph and new

graphs can be built for test documents, the model can easily work in an inductive way.

2.3.1 Local Word Consecutive Graph

The simplest way to convert a document into a graph with words as nodes is by connecting

the consecutive words within a sliding window.

2.3.1.1 Simple consecutive graph models: Text-Level-GNN, MPAD, TextING

Text-Level-GNN Text-Level-GNN(Huang et al., 2019) applies a small sliding window and

constructs the graph with a small number of nodes and edges in each graph, which saves

memory and computation time. The edge value is trainable and shared across the graphs

when connecting the same two words, which also brings global information.

Unlike corpus-level graph models, Text-Level-GNN applies a message passing mechanism

(MPM)(Gilmer et al., 2017) instead of GCN for graph learning. For each node, the neighbour

information is aggregated using max-pooling with trainable edge values as the AGGREGATE

function and then the weighted sum is used as the COMBINE function. To get the repres-

entation of each graph, sum-pooling and an MLP classifier are applied as the READOUT

function. The propagation shows as:

H
(l+1)
i = (1− α)(maxn∈Ni

eniH
(l)
n ) + αH

(l)
i (2.19)

zi = softmax(W
∑
i

Hi + b) (2.20)

where H
(l)
i is ith word node presentation of layer l, eni is edge weight from node n to node i.

A two-layer MPM is applied, and the input of each graph is pretrained GLoVe vectors.
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MPAD MPAD(Message Passing Attention Networks)(Nikolentzos et al., 2020) connects

words within a sliding window of size 2 but also includes an additional master node connecting

all nodes in the graph. The edge only shows the connectedness of each pair of word nodes

and is fixed. A variant of Gated Graph Neural Networks is applied where the AGGREGATE

function is the weighted sum and the COMBINE function is GRU(Chung et al., 2014).

Self-attention is applied in the READOUT function.

To learn the high-level information, the master node is directly concatenated with the

READOUT output, working as a skip connection mechanism. To get the final representation,

each layer’s READOUT results are concatenated to capture multi-granularity information.

Pretrained Word2vec is used as the initialization of word nodes input.

TextING To simplify MPAD, TextING(Zhang et al., 2020b) ignores the master node in the

document-level graphs, which makes the graph sparser. Compared with Text-Level-GNN,

TextING remains fixed edges. A similar AGGREGATE and COMBINE function are applied

under the concept of e Gated Graph Neural Networks(GGNN)(Li et al., 2016) with the

weighted sum and GRU. However, for the READOUT function, soft attention is used and

both max-pooling and mean-pooling are applied to make sure that "every word plays a role in

the text and the keywords should contribute more explicitly".

2.3.1.2 Advanced graph models: MLGNN, TextSSL, DADGNN

MLGNN MLGNN(Multi-level GNN)(Liao et al., 2021) builds the same graph as TextING

but introduces three levels of MPM: bottom-level, middle-level and top-level. In the bottom-

level MPM, the same method with Text-Level-GNN is applied with pretrained Word2vec as

input embedding but the edge is non-trainable. In the middle-level, larger window size is

adopted and Graph Attention Networks(GAT)(Veličković et al., 2018) is applied to learn long

distant word nodes information. In the top-level MPM, all word nodes are connected and

multi-head self-attention(Vaswani et al., 2017) is applied. By applying three different levels

of MPM, MLGNN learns multi-granularity information well.
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DADGNN DADGNN(Deep Attention Diffusion GNN)(Liu et al., 2021) constructs the

same graph as TextING but uses attention diffusion to overcome the oversmoothing issue.

Pretrained word embedding is used as the input of each node and an MLP layer is applied.

Then, the graph attention matrix is calculated based on the attention to the hidden states of

each node. The diffusion matrix is calculated as

T =
∞∑
n=0

ϵnA
n (2.21)

where A is the graph attention matrix and ϵ is the learnable coefficients. An plays a role of

connecting n-hop neighbours and Liu et al. (2021) uses n ∈ [4, 7] in practice. A multi-head

diffusion matrix is applied for layer propagation.

TextSSL To solve the word ambiguity problem and show the word synonymity and dynamic

contextual dependency, TextSSL(Sparse Structure Learning)(Piao et al., 2021) learns the

graph using intra-sentence neighbours and inter-sentence neighbours simultaneously. The

local syntactic neighbour is defined as the consecutive words and trainable edges across

graphs are also included by using gumble-softmax(Jang et al., ). By applying sparse structure

learning, TextSSL manages to select edges with dynamic contextual dependencies.

2.3.2 Global Word Co-occurrence Graph

Similar to the TextGCN graph, document-level graphs can also use PMI as the word-word

edge values.

2.3.2.1 Only global word co-occurrence: DAGNN

DAGNN To address the long-distance dependency, hierarchical information and cross-domain

learning challenges in domain-adversarial text classification tasks, Wu et al. (2019b) propose

Domain-Adversarial Graph Neural Network (DAGNN). Each document is represented by

a graph with content words as nodes and PMI values as edge values, which can capture

long-distance dependency information. Pretrained FastText is chosen as the input word

embeddings to handle the out-of-vocabulary issue and a GCN model with a skip connection
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is used to address the oversmoothing problem. The propagation is formulated as:

H(l+1) = (1− α)ÃH(l) + αH(0) (2.22)

To learn the hierarchical information of documents, DiffPool(Ying et al., 2018) is applied to

assign each document into a set of clusters. Finally, adversarial training is used to minimize

the loss on source tasks and maximize the differentiation between source and target tasks.

2.3.2.2 Combine with Extra Edges: ReGNN, GFN

ReGNN To capture both global and local information, ReGNN(Recursive Graphical Neural

Network)(Li et al., 2019a) uses PMI together with consecutive words as the word edges. And

graph propagation function is the same as GGNN while additive attention(Bahdanau et al.,

2015) is applied in aggregation. Pretrained GloVe is the input embedding of each word node.

GFN GFN(Graph Fusion Network)(Dai et al., 2022) builds four types of graphs using the

word co-occurrence statistics, PMI, the similarity of pretrained embedding and euclidean

distance of pretrained embedding. Although four corpus-level graphs are built, the graph

learning actually happens on subgraphs of each document, making the method a document-

level GNN. For each subgraph, each type of graph is learned separately using the graph

convolutional method and then a fusion method of concatenation is used. After an MLP layer,

average pooling is applied to get the document representation.

2.3.3 Other word graphs

Some other ways of connecting words in a document have been explored.

HyperGAT Ding et al. (2020) proposes HyperGAT(Hypergraph Attention Networks) which

builds hypergraphs for each document to capture high-level interaction between words. Two

types of hyperedges are included: sequential hyperedges connecting all words in a sentence

and semantic hyperedges connecting top-K words after getting the topic of each word using

LDA. Like traditional hypergraph propagations, HyperGAT follows the same two steps of

updating but with an attention mechanism to highlight the key information: Node-level
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attention is applied to learn hyperedges representations and edge-level attention is used for

updating node representations.

IGCN Contextual dependency helps in understanding a document and the graph neural

network is no exception. IGCN(Tang et al., 2020) constructs the graph with the dependency

graph to show the connectedness of each pair of words in a document. Then, the word

representation learned from Bi-LSTM using POS embedding and word embedding is used to

calculate the similarity between each pair of nodes. Attention is used for the output to find

the important relevant semantic features.

GTNT Words with higher TF-IDF values should connect to more word nodes, with this

in mind, GTNT(Graph Transformer Networks based Text representation)(Mei et al., 2021)

uses sorted TF-IDF value to determine the degree of each node and applies the Havel-Hakimi

algorithm(Hakami, 1962) to determine the edges between word nodes. A variant of GAT is

applied during model learning. Despite the fact that GAT’s attention score is mutual for two

nodes, GTNT uses relevant importance to adjust the attention score from one node to another.

Pretrained Word2vec is applied as the input of each node.

2.3.4 Critical Analysis

Most document-level GNNs connect consecutive words as edges in the graph and apply a

graph neural network model, which makes them similar to CNN where the receptive field

enlarges when graph models go deeper. The major differences among document-level GNNs

are the details of graph models, e.g. different pooling methods, and different attention

calculations, which diminishes the impact of the contribution of these works. Compared with

corpus-level GNN, document-level GNN adopts more complex graph models and also suffers

from the out-of-memory issue when the number of words in a document is large.

The potential future work of document-level GNN can be: (1) exploring more graph con-

struction methods and (2) combining document-level GNN with pretrained models like

BERT.
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The comparison of Document-level GNN for text classification is shown in Table 2.2.

TABLE 2.2. Document-level GNN Models Detailed Comparison on whether
using external resources, how to construct the edge and node input, and
whether transductive learning or inductive learning. GloVe and Word2vec are
pretrained if not specified. “emb sim” is short for “embedding similarity”,
“dep graph” is short “dependency graph”.

Model external edge construction node initialization learning
Text-Level-GNN Glove consecutive words Glove inductive
MPAD Word2vec consecutive words Word2vec inductive
TextING Glove consecutive words Glove inductive
MLGNN Word2vec consecutive words Word2vec inductive
DADGNN Word2vec/GloVe consecutive words Word2vec/GloVe inductive
TextSSL Glove consecutive words Glove inductive
DAGNN Glove pmi Glove inductive
ReGNN Glove consecutive words, pmi Glove inductive
GFN Glove pmi, emb sim Glove inductive
HyperGAT X LDA, consecutive words ont-hot inductive
IGCN spaCy dep graph LSTM emb inductive
GTNT Word2vec/GloVe tfidf sorted value Word2vec/GloVe inductive
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2.4 GNN for Knowledge Graph Completion

A typical knowledge graph completion model follows an encoder-decoder framework. The

encoder serves as a representation learning method, which outputs the representations of

entities and relations. The decoder usually adopts a score function to measure the validity of

a fact by calculating its score. A higher score indicates a higher possibility of the existence

of a fact. This framework works both for static knowledge graph completion and temporal

knowledge graph completion tasks. Graph neural network models can serve as an encoder to

capture the structural information in a knowledge graph.

2.4.1 Static KGC and GNN

Early works on Static KGC focus on deriving a good score function as the decoder while only

using an embedding lookup table as the encoder. The rise of Graph Neural Networks (GNN)

has led to the development of knowledge graph completion models that encode entities and

relations in a graph structure. These models use GNN to capture the relationships between

entities, leading to improved accuracy. They also take into account the graph structure

information for a deeper understanding of the knowledge graph. The use of GNN-based

models represents a significant advancement in the field.

2.4.1.1 GNN as the Encoder

A graph neural network model can be applied to a knowledge graph to encode the entity and

relation embedding.

R-GCN R-GCN(Schlichtkrull et al., 2018), which is short for Relational graph convolutional

network, treats each type of edge as a subgraph from the original graph. During the layer

propagation, a propagation similar to GCN is applied on each type of subgraph and then

summed together as the neighbour information. Formally, the layer update on node i at layer

l shows like:

h
(l+1)
i = σ(

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i ) (2.23)
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where R is the set of relations, N r
i is the set of entity nodes which connect to node i with

relation r, ci,r is the number of facts with subject entity i and relation r, h(l)
i and h

(l)
j are the

input embedding on layer l, Wr(l) and W0(l) are the trainable parameters. However, the

number of parameters will increase when the number of relations increases since for each

type of relation, a matrix Wr is learned.

WGCN SACN(Shang et al., 2019) applies WGCN(Weighted Graph Convolutional Networks)

as the encoder. To avoid learning the weight matrix on each relation, WGCN learns a weight

matrix shared across all the relations but uses a learnable parameter αr for the weighted sum

of each subgraph. Formally:

h
(l+1)
i = σ(

∑
j∈Ni

α(l)
r W (l)h

(l)
j +W

(l)
0 h

(l)
i ) (2.24)

KB-GAT Attention has been shown great superiority in most tasks, graph neural network

is without exception. Nathani et al. (2019) proposed KB-GAT which applies an attention

mechanism to identify the importance of each relation and each neighbour entity. The layer

propagation works as:

cijk = W1[hi||hj||hk] (2.25)

bijk = LeakyReLU(W2cijk) (2.26)

αijk =
exp(bijk)∑

n∈Ni

∑
r∈Ri,n

exp(binr)
(2.27)

h
(l+1)
i = σ(

∑
j∈Ni

∑
k∈Ri,j

αijkcijk) (2.28)

where i and j are entity nodes and k is the relation. KG-GAT can learn both entity and relation

embedding at the same time.

CompGCN By taking relation as a transformation function, CompGCN(Vashishth et al.,

2020) extends the GCN into a multi-relation graph learning method. The update of each layer

follows as:

h
(l+1)
i = σ(

1

|Ni|
∑
j∈Ni

W
(l)
0 f(hj, hr) +W

(l)
1 h

(l)
i ) (2.29)
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The transformation function f can be a sum, element-wise product, or circle-correlation.

However, these graph encoders can only work for a single graph, which can not be directly

applied to temporal KGC tasks.

2.4.1.2 Decoder Score Functions

hse, hoe, hr ∈ R1×d are the extracted representation of entities and relations accordingly from

the encoder and used as the input of the decoder.

TransE TransE(Bordes et al., 2013) views relation as a transformation on the subject entity.

It tries to minimize the Euclidean distance between the transformed subject entity and the

object entity. The score function is: −||hse + hr − hoe||.

RESCAL RESCAL(Nickel et al., 2011) treats relation as a transformation matrix Hr ∈ Rd×d

and the score function is calculated as hT
seHrhoe.

DistMult To reduce overfitting, DistMult(Yang et al., 2015) is a special case of RESCAL

by replacing the Hr with a diagonal matrix represented by hr. The score is < hse, hr, hoe >

where <> denotes the dot product.

SimplE SimplE(Kazemi and Poole, 2018) extends DistMult by considering both directions of

a relation. Two representations are adopted for relations: hr and hr−1 , which represent the

original relation and the inverse relation. The score is calculated by the sum of the original

triplet and the inverse triplet: 1
2
(< hse, hr, hoe > + < hse, hr−1 , hoe >)

TuckER TuckER(Balažević et al., 2019) applies the outer product on the representations

learned from the encoder and introduces a trainable tenor W ∈ Rd×d×d. The score function

works as < W,hse ⊗ hr ⊗ hoe > where ⊗ denotes the outer product.

ConvE Neural network based decoder also shows great performance. ConvE(Dettmers et al.,

2018) applies a 2D convolutional layer on the reshaped and concatenated entity and relation

embeddings. Then a linear layer is applied to the flattened feature for the final representation.
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The dot product between obtained feature and candidate entity embedding is applied to get

the score.

ConvTransE By removing the reshaping in ConvE and applying the 1D convolutional layer,

ConvTransE(Shang et al., 2019) shows better performance on knowledge graph completion

tasks.

These score functions can not only serve as a decoder in static KGC but also works for

temporal KGC, which will be introduced in the next section.

2.4.2 Temporal KGC and GNN

A temporal knowledge graph has extra timestamp information and a typical TKGC model can

be divided into two types: (1) encoding the temporal information in the encoder, and using a

static score function for decoding, (2) using a score function considering the timestamp.

2.4.2.1 Temporal Information in the Encoder

There are two main methods of encoding the temporal information: (1) use the timestamp

value to generate the embedding (2) consider the sequence information while ignoring the

actual timestamp value.

DE DE(Goel et al., 2020) encodes timestamp into the entity embedding by the following

method: the first several elements of the representation show periodical temporal information

while the rest shows the static features. The embedding of the entity i at timestamp t is

calculated as:

ht
i[n] =

ai[n]σ(wi[n]t+ bi[n]) if1 ⩽ n < γd.

ai[n] ifγd < n ⩽ d
(2.30)

where d is the dimension of DE embedding and γ controls the trade-off between temporal

features and static features.

TA Since a temporal knowledge graph can be viewed as a sequence of snapshots, an LSTM

model can be applied to the relation embedding. TA(Garcia-Duran et al., 2018) uses the
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LSTM model to encode the timestamp into relation embedding as hr,t. Then a decoder can be

applied on hse, hrmt, and hoe.

Also, a sequence of graph neural networks can serve as the encoder on the sequence of

snapshots.

RE-NET RE-NET(Jin et al., 2020) builds a recurrent event encoder for summarization of the

events in recent history. R-GCN is applied on each timestamp snapshot and a recurrent neural

network is applied between timestamps. RE-NET learns the joint probability and gets the

prediction result by sampling the graph from the joint probability.

REGCN Similarly, REGCN(Li et al., 2021b) works with several evolution units. Each

evolution unit is composed of a CompGCN model on the snapshot and GRU with the time

gate to consider structural dependencies.

CEN Both RE-NET and REGCN require a fixed length of history to inference on future facts.

However, different lengths of history might result in different results. CEN(Li et al., 2022a)

uses an ensemble model by bagging several simplified REGCN with different history lengths

to achieve a better result.

HisMatch The sequential GNN applied to the snapshots in history can learn the candidate-

related historical structure information. However, Li et al. (2022b) also points out the

importance of query-related information. Therefore, HisMatch builds two encoders on the

history snapshots and query-related subgraph to learn both candidate-related and query-related

history and achieves the best performance compared with other temporal knowledge graph

completion models.

By encoding a sequence of snapshots in history, the TKGC model can easily fit under both

interpolation and extrapolation settings.

2.4.2.2 Temporal Information in the Decoder

A static score function can be easily extended into a temporal score function by introducing

the extra temporal embedding into the calculation.
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TTransE By adding a fourth timestamp vector into TransE, the score function of TTransE(Jiang

et al., 2016) becomes −||hse + hr + ht − hoe||, where ht is the timestamp embedding.

HyTE HyTE(Dasgupta et al., 2018) also extends TranE into a temporal score function by

treating the timestamp as a projection method. The score function of HyTE is −||h′
se + h′

r −

h′
oe||, where h′

x = hx − hT
r hxhr.

ConT ConT(Ma et al., 2019) extends TuckER by replacing the learnable tensor W with the

timestamp tensor Ht, which makes the score funcion look like: < Ht, hse ⊗ hr ⊗ hoe >.

It is clear that the learned timestamp vector is not able to work in TKGC under the extrapola-

tion setting since that task requires inferencing on unknown timestamps.

2.4.2.3 Other TKGC models

There are also some models not following a traditional encoder-decoder framework in temporal

knowledge graph completion.

xERTE xERTE(Han et al., 2020) provides human-understandable prediction results by

extracting the related subgraphs using the query. A temporal relation graph attention (TRGA)

similar to GAT is applied to the graph.

CyGNet Zhu et al. (2021) believes that the repetitive queries shown in the history should

contribute to the query prediction result and proposed CyGNet. The generation mode in

CyGNet is responsible for predicting by considering the whole candidate set while copy mode

only considers the repetitive entities shown in the history with the same query.

TITer TITer(Haohai Sun, 2021), which adopts the reinforcement learning method, travels

through the knowledge graph and stops at the correct answer, called the “temporal-path-based”

reinforcement learning model. A relative time encoding function is used to encode the

temporal information.

Some of these models can achieve good results, but the absence of the encoder-decoder

framework makes it difficult for future improvement.



CHAPTER 3

Understanding Graph Convolutional Networks for Text Classification

Graph Convolutional Networks (GCN) have been effective at tasks that have rich relational

structure and can preserve global structure information of a dataset in graph embeddings.

Recently, many researchers focused on examining whether GCNs could handle different

Natural Language Processing tasks, especially text classification. While applying GCNs

to text classification is well-studied, its graph construction techniques, such as node/edge

selection and their feature representation, and the optimal GCN learning mechanism in text

classification is rather neglected. In this chapter, we conduct a comprehensive analysis

of the role of node and edge embeddings in a graph and its GCN learning techniques in

text classification. Our analysis is the first of its kind and provides useful insights into

the importance of each graph node/edge construction mechanism when applied at the GCN

training/testing in different text classification benchmarks, as well as under its semi-supervised

environment.

34
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3.1 Introduction

After the rise of deep learning, text classification models mostly applied sequence-based

learning models, CNN or RNN, which mainly capture text features from local consecutive

word sequences, but may easily ignore global word co-occurrence in a corpus that carries

non-consecutive and long-distance semantics. Graph-based learning models are directly

dealing with complex structured data and prioritising global feature exploitation. Several

recent research efforts on investigating Graph Convolutional Networks (GCN) on NLP tasks

include application to text classification (Huang et al., 2019; Yao et al., 2019; Liu et al.,

2020). This is because they can analyse the rich relational structure and preserve the global

structure in graph embeddings. The GCN-based text learning should include two main

phases: 1) graph construction from free text and 2) graph-based learning with the constructed

graph. A straightforward manner of graph construction is to represent relationships between

words/entities in the free text. Yao et al. (2019) proposed a text graph-based neural network,

named TextGCN, the first corpus-level graph-based transductive text classification model.

In TextGCN, a single large textual graph is firstly constructed based on the entire corpus

with words and documents as nodes, and the co-occurrence relationship between words and

documents as edges. Then, a GCN is employed to learn about the constructed text graph. More

recent studies applied extra contextual information, such as topic model (Huang et al., 2019),

syntactic and semantic information (Liu et al., 2020), pre-trained language model (Zhang et

al., 2020b) or utilised different information propagation mechanisms (Wu et al., 2019a; Zhu

and Koniusz, 2021). We noticed that most studies only focus on either hyperparameter testing

or performance comparison with other state-of-the-art text classification baselines. It is still

unclear what factors in textual graph construction or graph learning are having an impact

on GCN-based text classification. Thus, finding the optimal textual graph construction or

learning mechanism itself, the two main phases for GCN-based text learning, remains a black

box to us. Such observations and limitations lead to several important questions. First, the

performance of GCN-based text learning methods is highly affected by the quality of the input

graph, which covers the global structure and relations of an entire corpus or a whole dataset.

Our first question is ‘What is the best textual graph construction approach to understand
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and represent the whole textual corpus?’. In a text corpus, we have two main components,

documents and words, which can be used as nodes. Then, what feature/embedding is better to

represent the node feature for the textual graph? And what edge (relation) information should

be used between nodes? Secondly, we use GCN learning in order to capture information from

the neighbours of each word or document node. Our second question would be ‘How much

larger of a neighbourhood’s information should be integrated in order to produce the better

text classification performance?’ In other words, how many GCN layers should be stacked

for the best performance on different text classification tasks?

In this work, we focus on answering the above questions. We report the effect of graph

construction mechanisms by analysing the variants of defining the main components in a

graph, including nodes and edges. Then, we present a study to figure out the effect of GCN

learning layers by integrating a variant range of neighbourhood information. We conduct our

evaluation on both a full corpus environment and a semi-supervised limited environment. The

full corpus environment is exactly the same as the original training-testing split of five widely

used benchmark corpora including 20NG, R8, R52, Ohsumed and MR, tested by different

GCN-based text classification studies (Yao et al., 2019; Liu et al., 2020; Wu et al., 2019a).

The purpose of traditional GCN models (Kipf and Welling, 2017) is to solve semi-supervised

classification tasks, so we test on a semi-supervised environment with a very limited amount

of labelled data. For this limited setup, we use the above five widely used text classification

corpora, as well as four low-resource language document classification benchmarks (incl.

Chinese, Korean, and African). Note that this chapter aims to analyse the graph construction

and learning mechanism of GCN-based text classification models when there are no extra

resources. This is because high-quality resources are not always available, especially for the

low-resource language or specific domain that requires expertise.

In summary, the main contributions are as follows:

• We conduct a comprehensive analysis of the role of graph construction and learning

in GCN-based text classification over five widely used benchmarks (full corpus

environment) and nine benchmarks (limited training environment), including low-

resource languages
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• We perform a comparative analysis of the accuracy performance of different node

and edge constructions when GCN is applied for text classifications

• We evaluate the performance of GCN-based Text Classification with different vari-

ants of GCN layer stacks

• We make source code publicly available to encourage reproduction of the results1

1https://github.com/usydnlp/TextGCN_analysis
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3.2 Related Work

3.2.1 Graph Neural Networks in NLP

Graph Neural Networks (GNN) have received increasing attention in the realm of semi-

supervised learning (Kipf and Welling, 2017; Li et al., 2018a). Bastings et al. (2017) took

word representations produced based on syntactic dependency trees as graph nodes and applied

them to GCN learning for machine translation. Tu et al. (2019) proposed a Heterogeneous

Document-Entity graph and utilized a GCN to do reasoning over the constructed graph for

multi-hop reading comprehension problems. Cao et al. (2019) designed a Multi-channel

Graph Neural Network that learned the alignment-oriented knowledge graph embeddings

for entity alignment. Xu et al. (2019) extracted node features from neighbourhoods and

applied dual graph-state LSTM networks to summarize graph local features and extracted

interaction features between pairwise graphs for entity interaction prediction. Zhang et

al. (2020a) proposed automatic sentence graph learning and incorporated it with GCN for

headline generation. Dowlagar and Mamidi (2021) combined the GCN graph modelling with

multi-headed attention for code-mixed sentiment analysis.

Some recent studies applied graph neural networks for text classification by exploring different

approaches of graph structure construction learned from the text data. Henaff et al. (2015)

and Defferrard et al. (2016) simply viewed a document as a graph node. Peng et al. (2018)

proposed a sentence-based graph in order to solve a large-scale hierarchical text classification

problem. Yao et al. (2019) constructed a large textual graph with word and document nodes

and edge features represented as co-occurrence statistics, PMI/TF-IDF values. SGC (Wu

et al., 2019a) and S2GC (Zhu and Koniusz, 2021) constructed a graph as TextGCN, but

proposed different information propagation approaches. Vashishth et al. (2019) incorporated

syntactic/semantic information for word embedding training via GCNs. Liu et al. (2020)

proposed multiple aspect graphs constructed from external resources in terms of semantic,

syntactic and sequential contextual information, which are jointly trained. When faced with

low-resource text classification problems, these approaches either do not fully explore the

latent structure within the corpus data itself as they consider only the connections between



3.2 RELATED WORK 39

documents, or are not applicable due to the lack of external resources. Most prior studies

focused on either hyperparameter testing or performance comparison with other state-of-the-

art text classification baselines. Distinct from these works, we examine the important factors

in two main phases of GCN-based text learning, textual graph construction and graph learning

because they have a critical impact on the GCN-based text classification performance.



40 3 UNDERSTANDING GRAPH CONVOLUTIONAL NETWORKS FOR TEXT CLASSIFICATION

3.3 GCN-based Text Classification

FIGURE 3.1. Text Classification with GCN. A single large graph is con-
structed; words and documents appear as nodes, and co-occurrence as edges
between words and documents. Assume that we have only three classes for
the document classification

We consider the task of GCN-based text classification with only single-label classification.

Figure 3.1 visualises the architecture of typical graph-based text classification models based

on the given corpus with no extra resources. There are various types of GCN-based Text

Classification mechanisms introduced in the field. Two commonly used mechanisms are

the corpus-level (Yao et al., 2019) and document/sentence-level GCN text classification

models(Huang et al., 2019). In this work, we will focus on the former model since it captures

the global structure information of a corpus/entire dataset, whereas the latter models consider

only local-level information (from a single sentence/document). With the former approaches,

we can analyse the rich relational structure and preserve the global structure of a graph. In this

section, we give a brief overview of GCN and TextGCN, the first corpus-level GCN-based

text classification model.

3.3.1 Graph Convolutional Networks

GCN (Kipf and Welling, 2017) is a multi-layer neural network generalized from Convo-

lutional Neural Networks, which directly operates on the graph-structured data and learns

representation vectors of nodes based on properties of their neighbourhoods. Formally, a GCN

graph G is constructed as G = (V,E,A), where V (|V | = N) and E represent the set of

graph nodes and edges respectively while A ∈ RN×N is the graph adjacency matrix. Based on
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the constructed graph G, the GCN learning takes in the input matrix H0 ∈ RN×d0 containing

initial d0-dimensional features of the N nodes in V and then conducts the propagation through

layers based on the rule in equation 3.1, which formulates the propagation operation from

layer l to the subsequent layer (l + 1).

H(l+1) = f(H(l), A) = σ(ÂH(l)W (l)) (3.1)

Here, Â = D̃− 1
2 ÃD̃− 1

2 is the normalized symmetric adjacency matrix Ã = A+ I (I refers

to an identity matrix for including self-connection of nodes); D̃ is the diagonal node degree

matrix, i.e. D̃(i, i) =
∑

j Ã(i, j); W
(l) ∈ Rdl×dl+1 denotes the layer-specific trainable weight

matrix for the lth layer (dl/dl+1 is the feature dimension of layer l/l + 1); σ is a non-linear

activation function such as ReLU or softmax, which can be different for a specific layer. The

main focus of our analysis lies in exploring the role of node and edge that constructs the graph

G as well as the variants of GCN learning techniques when applied to text classification.

3.3.2 TextGCN

Inspired by a GCN, TextGCN (Yao et al., 2019) constructs an entire corpus-based graph, which

uses all the words and documents in the corpus as graph nodes and sets the word-word and

word-document edges to preserve the global word co-occurrence and word-document relations

in the graph structure. Then, it would be modelled by GCN learning. The edge between each

word pair is represented by the point-wise mutual information (PMI) value, normally used

for measuring semantic similarity in the Term-Sentence-Matrix. The word-document edge is

calculated based on the Term Frequency-Inverse Document Frequency(TF-IDF) weight of the

word in the document. The constructed graph is fed into a two-layer GCN as in equation 3.1

where the second-layer node embeddings for both word and document have the same size as

the label set and are passed into a softmax classifier for the output. The cross-entropy loss is

then calculated over all labelled documents for training and optimization. Especially, they

simply set the initial input word/document node features as one-hot vectors.
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3.4 GCN Analysis on Text Classification

FIGURE 3.2. Different Variants of Edge Construction in an entire corpus-
based graph. Assume that we have four documents and three words.

3.4.1 Graph Node Construction Analysis

Following TextGCN, we set all the words and documents in the corpus as our node set for

graph G, i.e. the number of nodes |V | = N = D + M equals the sum of the number of

documents (corpus size D) and the number of unique words in the corpus (vocab size M ).

With those word and document nodes, we explore the role of initial node representation

in GCN-based text classification models with two commonly used input embedding types

in NLP: 1) one-hot and 2) BERT embeddings. 1) one-hot embedding is the most widely

used categorical input encoding approach in traditional NLP. 2) Bert embedding is one

of the most popular contextual word embeddings so we generate word/document node

representation. It includes each individual word embedding and a [CLS] token for representing

sentence/document-level embedding.

BDd
= BERT(Dd) (3.2)

HnodeDd
= B

[CLS]
Dd

(3.3)

HnodeWm
= min

d∈DWm

(BWm
Dd

) (3.4)
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For one-hot embedding, we simply set the feature matrix H0 as an identity matrix I ∈ RN×N

for the one-hot vector input. For BERT embedding, the calculation for word and document

nodes is illustrated in Equations 3.2,3.3,3.4. Concretely, we feed each document Dd into the

BERT model as in equation 3.2, resulting in the sequence representation BDd
. For example,

a document Dd such as “John feels happy" will result in the BDd
as “B[CLS]

Dd
BJohn

Dd
Bfeels

Dd

Bhappy
Dd

B
[SEP ]
Dd

". We directly take the [CLS] representation B
[CLS]
Dd

as the node embedding for

Dd, as in equation 3.3. Then for a word Wm, we collect all the documents containing this

word, denoted as DWm , and apply min pooling over all the BERT representation BWm
Dd

for

this word from documents in DWm , as is illustrated in equation 3.4. The essential difference

between these two types of embedding is that one-hot embedding incorporates no external

knowledge or semantic information but purely indicates which word or document in the

corpus the node is representing. Comparatively, BERT embedding is the output representation

from the BERT model pretrained on a large text corpus, which can impart common sense

semantic information to the represented nodes and differentiate each document node based on

the document-specific word context. The detailed analysis of these two embedding types is

provided in Section 3.6.1.

3.4.2 Graph Edge Construction Analysis

For edge construction, we intend to fully analyse all possible co-occurring relations between

every two types of nodes, which no studies have yet explored. We utilise document-document

edges in addition to word-word and word-document edges as can be seen in Figure 3.2. The

construction details are provided in equation 3.5. Similar to the TextGCN(Yao et al., 2019),

we use the PMI value between word pairs as a word-word edge feature and utilise Term

Frequency-Inverse Document Frequency(TF-IDF) weight to weight word-document edges.
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PMI(i, j) = max(log
p(i, j)

p(i)p(j)
, 0) (3.5)

p(i, j) =
#W (i, j)

#W
(3.6)

p(i) =
#W (i)

#W
(3.7)

3.4.3 Graph Learning

As mentioned before, GCN only captures information about the immediate neighbours with

one layer of graph convolution. When multiple GCN hidden layers are stacked, information

about larger neighbourhoods is integrated.

We adopt this GCN propagation rule in equation 3.1 for modelling the constructed graph.

Specifically, we explore various numbers of hidden layers L ∈ {1, 2, 3, 4, 5} to find the

optimal range of neighbours to be integrated. For the first l (l ∈ {1, .., L − 1}) layers, we

apply ReLU as activation functions as in equation 3.8. Here H(1) is the initial feature matrix

of nodes using one-hot or BERT as described in Section 3.4.1. We set the last layer output for

both word and document node embeddings to have the same size as the label set and apply a

softmax classifier over the output as in equation 3.9. The cross-entropy loss is then calculated

over all the labelled documents as in equation 3.10, in which YD is the set of document indices

with labels available and F is the output feature dimension (equals to the number of classes).

Y denotes the label indicator matrix. We provide the analysis for different numbers of hidden

layers in Section 3.6.3.

H(l+1) = ReLU(ÂH(l)W (l)) (3.8)

Z = softmax(ÂH(L)W ((L))) (3.9)

L = −
∑
d∈YD

F∑
f=1

Ydf lnZdf (3.10)
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3.5 Experiment setup

3.5.1 Datasets

We conduct the comprehensive analysis on both a full corpus environment and a semi-

supervised limited environment. The full environment is exactly the same as the original

training-testing split of five widely used benchmark corpora including 20NG, R8, R52,

Ohsumed and MR, followed by different GCN-based text classification studies (Yao et

al., 2019; Liu et al., 2020; Wu et al., 2019a). The limited environment aims to cover semi-

supervised text classification with a very limited amount of labelled data. We randomly sample

1% as a training set and use the remaining 99% for testing on nine benchmarks, including the

above five benchmarks and additional four low-resource languages (incl. Chinese, Korean,

African) document classification datasets

• The 20NG contains 18,846 news documents in total, which are evenly categorized

into 20 classes.

• R8 and R52 (all-terms version) are subsets of the Reuters 21578 dataset. R8 has

8 topic categories with 7,674 documents, and R52 is based on 52 categories with

9,100 documents.

• Ohsumed is collected from MEDLINE, which is a bibliographic database of bio-

medical information. Only single-label classification task (7,400 documents) is

selected.

• MR is a binary sentiment (positive and negative) classification dataset, which in-

cludes 10,622 short movie review comments.

The following list shows four additional document classification benchmarks in low-resource

languages, including Chinese, Korean, and African.

• Waimai is a binary sentiment analysis dataset collected from a Chinese online food

ordering platform, which provides 11,987 Chinese comments about the food delivery

service.
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• ChSenti contains 7,766 Chinese documents of hotel service comments with binary

class.

• KrHate provides 2,000 binary hate speech comments collected from the Korean

radical Anti-male online community, named Womad.

• Xhosa is a Xhosa dataset from the NCHLT Text Corpora collected by the South

African Department of Arts and Culture & Centre for Text Technology, which

contains 4,000 documents of 11 categories.

3.5.2 Implementation Details

Graph Node Setup We use one-hot and BERT embedding for the analysis. The dimension of

one-hot embedding corresponds to the number of nodes. For BERT embeddings, “bert-base-

uncased"(for English-based) and “bert-base-multilingual-uncased"(for non-English-based)

developed by Hugging Face (Wolf et al., 2019) is used with the input dimension of 768.

Graph Edge Setup In order to construct the edge, the window size is set to 20 for PMI

calculation (word-word edges). Graph Learning Setup Each hidden layer’s dimension is

defined as 200, and the dimension of the output layer is the number of classes. The training

hyperparameters include 0.02 as the learning rate; 0.5 as the dropout rate; 0 as the L2 loss

weight; 200 as the maximum number of epochs with the early stopping of 10 epochs. Adam

(Kingma and Ba, 2015) is used to train the model.
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3.6 Discussion and Analysis

TABLE 3.1. Test accuracy by different node construction variants on the full
environment

Node feature 20NG R8 R52 Ohsumed MR
one-hot 0.8607 0.9692 0.9345 0.6824 0.7641
BERT 0.7206 0.9510 0.8440 0.4618 0.7821

TABLE 3.2. Test accuracy by different node construction variants on the
limited environment

Node feature 20NG R8 R52 Ohsumed MR
one-hot 0.6937 0.8973 0.7990 0.4092 0.6178
BERT 0.6585 0.9147 0.7962 0.3893 0.7255

Node feature Waimai ChSenti KrHate Xhosa
one-hot 0.8301 0.7548 0.9048 0.9952
BERT 0.8059 0.6970 0.8256 0.7878

3.6.1 Effect of Node Embedding

Table 3.1 shows the test accuracy by using either one-hot or BERT embeddings as initial node

features on the five benchmark datasets under the full environment. First, it can be seen that

only MR achieves better results with BERT embedding than one-hot embedding, which might

be attributed to the fact that MR as a sentiment analysis task benefits better from the general

semantics learned from a large external text. In addition, for the other four datasets with higher

accuracy via one-hot embedding, we found that datasets with larger size of classification

categories, i.e. 20NG, R52, Ohsumed, tend to generate a bigger performance gap between the

embedding types compared to R8. We suppose that a smaller size of classification category

may exert itself better on pretrained embeddings since it does not have sufficient information

to train the global information. We also provide the comparative results under the limited

environment on all the 9 datasets in Table 3.2. It is reasonable to see an overall performance

drop compared to the full setting. For the first five benchmark datasets, MR still prefers BERT

embedding while R8 changes the preference to BERT from one-hot embedding. Both these

have a relatively small number of classification categories. This further supports the claim

that small-category datasets benefit more from BERT than large-category counterparts. When
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TABLE 3.3. Test accuracy by different edge construction variants on the full
environment

Edge feature 20NG R8 R52 Ohsumed MR
d2w only 0.8475 0.9493 0.9169 0.6667 0.7462

+w2w 0.8617 0.9693 0.9333 0.6841 0.7600
+w2w+d2d 0.8607 0.9692 0.9345 0.6824 0.7641

it comes to the low-resource datasets (Waimai, ChSenti, KrHate, Xhosa), it can be seen that

all of them produce better accuracy with one-hot embedding than BERT embedding, which

might be due to the quality of pre-training on low-resource language corpora. Note that we

used the edge set (d2w+w2w+d2d) for the node construction testing since it produces the

overall highest performance in both full and limited environments.

3.6.2 Effect of Edge Construction

We also analyse the usage of different edge features for both full and limited environments in

the Table 3.3 and 3.4 respectively. More specifically, three types of edge features are evaluated:

(1) d2w only, utilises only the word-doc edges in the constructed graph; (2) +w2w, uses both

word-doc and word-word edges; (3) +w2w+d2d, apply all the three types of edges including

doc-doc edges. Similar patterns can be found in both settings. Overall, a d2w-only graph

always results in the lowest performance, implying insufficient global structural information

conveyed by only the word-document co-occurrence. With the w2w edge, the performance

increased in all datasets and the amount of increase mostly varies from 0.01 to 0.04 in the two

settings. In addition, d2w+w2w+d2d using all three types of edges, further rises the accuracy

for R52 and MR under the full environment and for most of the datasets under the limited

environment. This highlights the benefit of using full co-occurring relationships (with all

types of edges) in an entire graph. A similar trend can be further observed with the persistent

spatial gap between the lowest blue line (d2w only) and the other two lines in Figure 3.3.

It illustrates the corresponding accuracy for the three edge features on the five benchmark

datasets when increasing the training proportion from the extremely few labelled setting (1%)

to 99%.
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FIGURE 3.3. Test accuracy by varying training data proportions (from 1% to
99%)

TABLE 3.4. Test accuracy by different node and edge construction variants
on the limited environment

Edge feature 20NG R8 R52 Ohsumed MR
d2w only 0.6239 0.8698 0.7776 0.3906 0.5995

+w2w 0.6680 0.8949 0.7978 0.4099 0.6158
+w2w+d2d 0.6937 0.8973 0.7990 0.4092 0.6178

Edge feature Waimai ChSenti KrHate Xhosa
d2w only 0.8149 0.5297 0.7445 0.9874

+w2w 0.8283 0.7410 0.7609 0.9953
+w2w+d2d 0.8301 0.7548 0.9048 0.9952

FIGURE 3.4. Test performance by varying GCN hidden layer stacks on the
full environment

3.6.3 Effect of GCN Learning

The main aim of GCN learning is to capture information about immediate neighbours with a

layer of convolution. When multiple GCN layers are stacked, information from much larger

neighbourhoods is extracted and integrated. In Figure 3.4, we conducted the text classification

evaluation to find the optimal range of neighbours’ information about each node. We stacked

1 to 5 GCN layers on different text classifications in the full environment. It can be seen
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FIGURE 3.5. Test performance by varying GCN hidden layer stacks on the
limited environment

that the highest performance is achieved by using 2 GCN layers for all five datasets and the

performance drops down as the layer decreases or increases. This indicates capturing 2 levels

of neighbourhood nodes is the best and increasing the level of neighbourhoods will gradually

lead to indifferentiable node representation. 20NG and MR have a similar overall trend and

perform more consistently in the three evaluation metrics. Comparatively, the other three

datasets are observed to have much lower overall Macro F1 than Accuracy/Weighted F1.

Those trends can also be found when switching from the full to the limited environment in

Figure 3.5. Even though low-resource language datasets have extremely few labelled data,

it is still 2 layers model that performs the best overall, shown in Figure 3.5. When the layer

number increases, the performance does not always decrease sharply as in previous cases.

Specifically, the performance of the two Chinese datasets ChSenti and Waimai goes up again

at 4 layers after the decrease at 3 layers. Xhosa only achieved a rather stable performance

degradation when increasing from 2 to 5 layers. It can be seen that different languages may

preserve different patterns on the metrics with the change of GCN layers.
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3.7 Conclusions

We focused on understanding the underlying factors that may influence GCN-based text

classification and proposed to examine graph construction and graph learning mechanisms.

We systematically examined the role of node and edge in a corpus-level textual graph and

found the optimal range of neighbours’ information by testing the different numbers of

GCN layer stacks. The empirical results of experiments on various real datasets in both full

environment and limited training environment supported our analysis.



CHAPTER 4

ME-GCN: Multi-dimensional Edge-Embedded Graph Convolutional

Networks

Compared to sequential learning models, graph-based neural networks exhibit an excellent

ability in capturing global information and have been used for semi-supervised learning

tasks. Most Graph Convolutional Networks are designed with the single-dimensional edge

feature and failed to utilise the rich edge information about graphs. This chapter introduces

the ME-GCN (Multi-dimensional Edge-enhanced Graph Convolutional Networks) for semi-

supervised text classification. A text graph for an entire corpus is firstly constructed to describe

the undirected and multi-dimensional relationship of word-to-word, document-document, and

word-to-document. The graph is initialised with corpus-trained multi-dimensional word and

document node representation, and the relations are represented according to the distance of

those words/documents nodes. Then, the generated graph is trained with ME-GCN, which

considers the edge features as multi-stream signals, and each stream performs a separate

graph convolutional operation. Our ME-GCN can integrate a rich source of graph edge

information of the entire text corpus. The results have demonstrated that our proposed model

has significantly outperformed the state-of-the-art methods across eight benchmark datasets.

52
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4.1 Introduction

Deep Learning models, such as Recurrent Neural Networks (RNN) or Transformer, have

performed well and have been widely used for text classification. However, the performance is

not always satisfactory when utilising small labelled datasets. In many practical scenarios, the

labelled dataset is very scarce as human labelling is time-consuming and may require domain

knowledge. There is a pressing need for studying semi-supervised text classification with a

relatively small number of labelled training data in the deep learning paradigm. For successful

semi-supervised text classification, it is crucial to maximizing the effective utilization of

structural and feature information of unlabelled data.

Graph Neural Networks (GNN) have recently received lots of attention as they can analyse

rich relational structures, prioritize global features exploitation, and preserve the global

structure of a graph in graph embeddings. Due to these benefits, there have been some

successful attempts to revisit semi-supervised learning with Graph Convolutional Networks

(GCN) (Kipf and Welling, 2017). TextGCN (Yao et al., 2019) initialises the whole text

corpus as a document-word graph and applies GCN for text classification. It shows the

potential of GCN-based semi-supervised text classification. Hu et al. (2019b) worked on

semi-supervised short text classification using GCN with topic-entity, and Liu et al. (2020)

proposed tensorGCN with semantic, syntactic, and sequential information.

One major problem in those existing GCN-based text classification models is that edge

features are restricted to be one-dimensional, which is the indication about whether there is

an edge or not (e.g. binary connectedness) or often one-dimensional real-value representing

similarities (e.g. pmi, tf-idf). Instead of being a binary indicator variable or a single-

dimensional value, edge features can possess rich information and be fully incorporated

by using multi-dimensional vectors. Addressing this problem is likely to benefit several

graph-based classification problems but is particularly important for the text classification

task. This is because the relationship between words and documents can be better represented

in a multi-dimensional vector space rather than a single value. For example, word-based

vector space models embed the words in a vector space where similarly defined words are
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mapped near each other. Rather than using the lexical-based syntactic parsers or additional

resources, words that share semantic or syntactic relationships will be represented by vectors

of similar magnitude and be mapped in close proximity to each other in the word embedding.

Using this multi-dimensional word embedding as the node and edge features, it would be

more efficient to analyse rich relational information and explore the global structure of a

graph. Then, what would be the best way to exploit edge features in a text graph convolutional

network? According to the recently reported articles (Gong and Cheng, 2019; Khan and

Blumenstock, 2019; Huang et al., 2020; Liu et al., 2020), more rich information should be

considered in the relations in the graph neural networks.

In this chapter, we propose a new multi-dimensional edge-enhanced text graph convolutional

network (ME-GCN), which is most suitable for semi-supervised text classification. Note that

the focus of our semi-supervised text classification task is on a small proportion of labelled

text documents with no other resource, i.e. no pre-trained word embedding or language model,

syntactic tagger or parser.

We construct a single textual large graph from an entire corpus, which contains words and

documents as nodes. The graph describes the undirected and multi-dimensional relationship

of word-to-word, document-document, and word-to-document. Each word and document is

initialised with corpus-trained multi-dimensional word and document embedding, and the

relations are represented based on the semantic distance of those representations. Then, the

generated graph is trained with ME-GCN, which considers edge features as multi-stream

signals, and each stream performs a separate graph convolutional operation. We conduct

experiments on several semi-supervised text classification benchmark datasets. The proposed

model can achieve strong text classification performance with a small proportion of labelled

documents with no additional resources. The main contributions are as follows:

• To the best of our knowledge, this is the first attempt to apply multi-dimensional

edge features on GNN for text classification.

• ME-GCN is proposed to use the corpus-trained multi-dimensional word and document-

based edge features for the semi-supervised text classification.
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• Experiments are conducted on several benchmark datasets to illustrate the effective-

ness of ME-GCN for semi-supervised text classification.
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4.2 Related Works

4.2.1 Semi-supervised text classification

Due to the high cost of human labelling and the scarcity of fully-labelled data, deep learning

based semi-supervised models have received lots of attention in text classification. Latent

variable models (Chen et al., 2015) apply topic models by user-oriented seed information

and infer the documents’ labels based on category-topic assignment. The embedding-based

model (Tang et al., 2015; Meng et al., 2018) utilises seed information to derive text (word or

document) embeddings for documents and labels for text classification. Yang et al. (2017)

leveraged sequence-to-sequence Variational AutoEncoders (VAEs) model on text classification

and sequential labelling. Miyato et al. (2017) utilized adversarial and virtual adversarial

training to the text domain by applying perturbations to the word embeddings. Recently,

graph convolutional networks (GCN) have been popular in semi-supervised learning as it

shows superior global structure understanding ability.(Kipf and Welling, 2017).

4.2.2 GNN for Text Classification

Graph Neural Networks have received lots of attention and successfully used in various

NLP tasks (Bastings et al., 2017; Tu et al., 2019; Cao et al., 2019; Xu et al., 2019). Yao

et al. (2019) proposed the Text Graph Convolutional Networks by applying a basic GCN

(Kipf and Welling, 2017) to the text classification task. In their work, a text graph for

the whole corpus is constructed; word and document nodes are initialised with one-hot

representation and edge features are represented as one-dimensional real values, such as PMI,

TF-IDF. Several studies have attempted multiple different graph alignments using knowledge

graphs or semantic/syntactic graphs. Vashishth et al. (2019) applied GCN to incorporate

syntactic/semantic information for word embedding training. Cao et al. (2019) proposed

an alignment-oriented knowledge graph embedding for entity alignment. TensorGCN (Liu

et al., 2020) proposed semantic, syntactic, and sequential contextual information. In their

framework, multiple aspect graphs are constructed from external resources, and those graphs
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are jointly trained. However, our model ME-GCN constructs and trains multi-dimensional

node and edge features alone based on the given text corpus.
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4.3 ME-GCN

We propose the Multi-dimensional Edge-enhanced Graph Convolutional Networks (ME-

GCN) for semi-supervised text classification. Note that all graph components are only based

on the given text corpus without using any external resources. We utilize the GCN as a

base component, due to its simplicity and effectiveness. In this section, we first give a brief

overview of GCN and introduce details of how to construct our corpus-based textual graph

from a given text corpus. Finally, we present ME-GCN learning model.

GCN Graph A GCN (Kipf and Welling, 2017) is a generalised version of the convolutional

neural networks for semi-supervised learning that operates directly on the graph-structured

data and induces embedding vectors of nodes based on properties of their neighbourhoods.

Consider a graph G = (V,E,A), where V (|V | = N) is the set of graph nodes, E is the set of

graph edges, and A ∈ RN×N is the graph adjacency matrix showing connectedness of nodes.

4.3.1 Textual Graph Construction

We first describe how to construct a textual graph that contains word/document node represent-

ation and multi-dimensional edge features for a whole text corpus. We apply a straightforward

textual construction approach that treats words and documents as nodes in the graph. Unlike

Yao et al. (2019), we have three types of edges, namely word-document edge, word-word

edge, and document-document edge with the aim to investigate all possible relations between

nodes. Formally, we define a ME-GCN graph GME = (V,E(t),ME(t)), where t denotes

the tth dimensional edge, V (|V | = N) is the set of graph nodes of word/document, E(t)

are the set of graph edges, which can be one of the three types, and ME(t) is the set of

adjacency matrix at the tth dimension. The details of the node and edge features construction

are presented as follows.
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4.3.1.1 Textual Node Construction

From an entire textual corpus, we construct word and document nodes in a graph so that

the global word and document distance can be explicitly modelled and graph convolution

can be easily adapted. ME-GCN considers the word and document nodes as components for

preserving rich information and representing the global structure of a whole corpus, which can

fully support for successful semi-supervised text classification. With this in mind, ME-GCN

trains word/node feature by using a Word2Vec(Mikolov et al., 2013) for word nodes, and a

Doc2Vec (Le and Mikolov, 2014) for document nodes. For instance, Word2Vec takes as its

input a whole corpus of words, and the trained word vectors are positioned in a vector space

such that words that share common contexts in the corpus are located in close proximity to one

another in the space. This is well-aligned with the role of graph neural networks, representing

the global structure of the corpus, and preserving rich semantic information of the corpus.

Most importantly, those word/document embeddings are distributed representations of text in

an T -dimensional space so the distance between words and documents can be represented

as a multi-dimensional vector. Formally, the word/document node features in ME-GCN are

initialised as follows. Note that negative sampling is applied to reduce the training time.

Word Node Construction We train the Word2Vec CBOW (Mikolov et al., 2013) using

context words to predict the centre word. Assume we have a given text corpus consisting of K

documents and U unique words. The input is a set of context words Xik in document k ∈ K

encoded as a one-hot vector of size U . Then the hidden layer H and output layer Output are

formulated in equations and , in which WU×T and W ′
T×U are two projection matrices. After

training, we extract the U vectors of dimension T from the updated matrix WU×T representing

the corresponding U unique words in the whole corpus.

H =
C∑
i=1

XikWU×T (4.1)

Output = HW ′
T×U (4.2)

Document Node Construction Doc2Vec CBOW (Le and Mikolov, 2014) is essentially the

same as Word2Vec. In Doc2Vec, we feed the context words Xik together with the current
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document k to the model, which is also encoded as a one-hot vector based on the document

id, and the vector size becomes Û = U +K. We have the projection matrix WÛ×T containing

U +K vectors. After training, those K vectors in the updated WT×Û are used for representing

the corresponding K document.

H = DkWÛ×T +
C∑
i=1

XikWÛ×T (4.3)

Output = HW ′
T×Û

(4.4)

4.3.1.2 Multi-dimensional Edge Construction

In this section, we describe how to construct a multi-dimensional edge feature in a graph. A

traditional textual graph edge (Yao et al., 2019) was based on word occurrence in documents

(document-word edges), and word co-occurrence in the whole corpus (word-word edges),

however, the occurrence information is not enough to extract how close two pieces of text

are in both surface proximity and meaning. According to Mikolov et al. (2013), the distance

between word/document embeddings learns semantically meaningful representations for

words from local co-occurrences in sentences. Inspired by this, we utilise the distance

between word/document embeddings to preserve the rich semantic information captured

edges, which are also presented as multi-dimensional vectors. To represent all possible edge

types, we propose three types of edges: word-word edges, document-document edges, and

word-document edges. Our goal is to incorporate the semantic similarity between individual

node pairs (each unique word and document) into multi-dimensional edge features. One

such measure for word/document node similarity is provided by their Euclidean distance

in the Word2Vec or Doc2Vec embedding space. We separately use each dimension space

in the node feature (Word2Vec/Doc2Vec) for representing each of the dimensions in the

multi-dimensional node edge. Thus, we will have T dimensional edges between nodes of T

dimensional features and each t ∈ {1, 2, ..., T} is represented by one-dimensional Euclidean

distance calculation in the tth dimensional space. This edge calculation method is applied to

word-word and doc-doc edge features.
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Word-Word Edge Feature We draw on the learned semantics in each feature dimension of

the word embedding of size T to calculate the edge weight for each dimension. Concretely,

the T -dimensional word-word edge E
(t)
wi,wj , t ∈ {1, 2, ..., T} between word i and word j is

formulated as in equation 4.5, in which W
(t)
i and W

(t)
j represents the feature value at the

dimension t of the word embedding Wi for word i and Wj for word j respectively. The

denominator calculates the distance of the two words regarding dimension t and tanh(−1) is

used for normalization.

E(t)
wi,wj

= tanh
1

|W (t)
i −W

(t)
j |

(4.5)

Doc-Doc Edge Feature The document-document edge is constructed in a way similar to the

word-word edge. As is shown in equation 4.6, the T -dimensional document-document edge

E
(t)
di,dj

is calculated based on the normalized Euclidean distance between the values D(t)
i and

D
(t)
j at each dimension t of the features for the document i and j.

E
(t)
di,dj

= tanh
1

|D(t)
i −D

(t)
j |

(4.6)

Word-Doc Edge Feature We use the same calculation method for a single-dimension

word-document edge as in TextGCN while repeating it for each dimension t. Thus, the

T -dimensional word-document edge E
(t)
wi,dj

is simply represented as the TF-IDF value of

word i and document j. This is repeated for each dimension t, as formulated in equation 4.7.

We also found using TF-IDF weight is better than using term frequency only.

E
(t)
wi,dj

= TF-IDFwi,dj (4.7)

Formally, the multi-dimensional edge weights between node i and j are defined as follows.

ME
(t)
ij =



E
(t)
wi,wj wi, wj are words

E
(t)
di,dj

di, dj are docs, Wdi∩dj ≥ u

E
(t)
wi,dj

wi is word, dj is doc

1 i = j

0 otherwise

(4.8)
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FIGURE 4.1. Model Architecture

The multi-dimensional edge for node i and j can be E
(t)
wi,wj when i and j are both word

nodes; or E(t)
di,dj

when i and j are both document nodes and the number of shared unique

words by the two documents Wdi∩dj is no less than a threshold u; or E(t)
wi,dj

the two nodes are

word-document pair; or the edge is set to 1 for self-connection (i = j); otherwise no edge will

be connected between the two nodes. We noted that the threshold u for the doc-doc edges is

not compulsory but efficient for better computation. The detailed threshold is in Section 4.4.3.

4.3.2 ME-GCN Learning

After constructing the multi-dimensional edge enhanced text graph, we focus on applying

effective learning framework to perform GCN on the textual graph with multi-dimensional

edge features. The overall architecture of ME-GCN is presented in Figure 4.1.

The traditional GCN learning takes into the initial input matrix H(0) ∈ RN×d0 containing N

node features of size d0. Then the propagation through layers is made based on the rule in

equation 4.9, which takes into consideration both node features and the graph structure in
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terms of connected edges.

H(l+1) = f(H(l), A) = σ(ÂH(l)W (l)) (4.9)

The l and (l + 1) represents the two subsequent layers, Â = D̃− 1
2 ÃD̃− 1

2 is the normalized

symmetric adjacency matrix Ã = A+ I (I is an identity matrix for including self-connection),

D̃ is the diagonal node degree matrix with D̃(i, i) = ΣjÃ(i, j), and W (l) ∈ Rdl×dl+1 is a

layer-specific trainable weight matrix for lth layer. dl and dl+1 indicates the node feature

dimension for lth layer and (l+1)th respectively. σ denotes a non-linear activation function for

each layer such as Leaky ReLu/ReLU except for the output layer where softmax is normally

used for the classification.

Our goal is to represent the node representation by aggregating neighbour information with

each edge’s features in a multi-stream manner. Hence, we generalize the traditional GCN

learning approach to perform multi-stream(MS) learning for the multi-dimensional edge-

enhanced graph. The overall MS learning procedure is in equation , for each node feature in

H(l) ∈ RN×dl , we will apply the multi-stream GCN learning fMS that formulates t streams

of traditional GCN learning through the t dimensions of the connected edge, resulting in

the multi-stream hidden feature H
(l+1)
t ∈ RN×d

(l+1)
ms at (l + 1)th layer. Here t ∈ {1, 2, ..., T}

and d
(l+1)
ms is the multi-stream feature size for each edge dimension at this layer. Then a

multi-stream aggregation function ϕMS is applied over the t streams, producing the feature

matrix H(l+1) ∈ RN×d(l+1) that contains the aggregated feature for each node in N . Here we

use the concatenation function as ϕMS for the hidden layer in the multi-stream aggregation,

leading us to have dl+1 = t ∗ d(l+1)
ms . Specifically, for the output layer, the pooling method is

used instead and the details are provided in the later paragraph. Accordingly, the updated

propagation rule is provided in equation 4.11. Unlike the original GCN propagation in

equation (9), we have T streams of GCN learning in each layer, sharing the same input H(l)

and propagating based on the T adjacency matrices ME(t), which involves a set of layer and

stream specific trainable weight matrices denoted as W (l)(t). We also tried the shared-stream

learning that shares the trainable weight matrices across each stream but found that separate

stream-specific trainable weight matrices have better performance. The comparison of the
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two learning mechanisms is provided in Section 4.5.2.

H(l) fMS−−→ H
(l+1)
t

ϕMS−−→ H(l+1) (4.10)

H(l+1) = ϕMS(fMS(H
(l),ME(t))) (4.11)

= ϕMS(σ(M̂E
(t)
H(l)W (l)(t)))

Unlike the hidden layers where we use concatenation to aggregate the node features over

each stream to continue propagation to the next layer, we instead apply the pooling method at

the output layer to further synthesize the multi-stream features of each node in order to do the

final classification. Equation 4.12 formulizes max pooling, in which H
(lO)
t ∈ RN×d

lO
ms , t ∈

{1, 2, ..., T} denotes the T streams of node features for N nodes at the output layer lO, and

here dlOms is the node feature dimension that equals to the classification label number C.

Through max pooling, we select the best valued features over the T streams for each node in

N before the final classification.

poolingmax = max
1≤t≤T

(H
(lO)
t ) (4.12)

In practice, we tried three different types of pooling methods, which are max pooling,

average pooling, min pooling. We provide the equation 4.12 for max pooling, in which

H
(lO)
t denotes the T streams of node features at the output layer lO, and C is the node feature

dimension that equals the classification label number. Through max pooling, we pick out

the max valued features over the T streams for each node in N . Similar to max pooling,

average pooling will make a balance across the stream and min pooling will focus on the

smallest valued features by replacing the max operation to average and min respectively.

We provide the comparison among these three pooling methods in Section 4.5.2.
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4.4 Evaluation Setup

We evaluate the performance of our ME-GCN on semi-supervised text classification, and

carefully examine the effectiveness of corpus-based multi-dimensional edge features.

TABLE 4.1. The summary statistics of datasets

Datasets # Doc # Words # Node # Class Avg. length
20NG 3,000 6,095 9,095 20 249.4

R8 3,000 4,353 7,353 8 84.2
R52 3,000 4,619 7,619 52 104.5

Ohsumed 3,000 8,659 11,659 23 132.6
MR 10,662 4,501 15,163 2 18.4

Agnews 6,000 5,360 11,360 4 35.2
Twit nltk 3,000 634 3,634 2 11.5

Waimai(zh) 11,987 10,979 22,966 2 15.5

4.4.1 Dataset

We evaluated our experiments on five widely used text classification benchmark datasets (Yao

et al., 2019), 20NG, R8, R52, MR and Ohsumed, and three additional semi-supervised text

classification datasets (Hu et al., 2019b), Agnews, Twitter nltk and Waimai. All the data

is split based on the extremely low resource text classification environment- 1% training

and 99% test set. The summary statistics of the datasets can be found in Table 4.1. For the

data sample selection, we randomly select them but the class distribution is followed by the

original datasets.

• 20NG is a 20-class news classification dataset and we select 3,000 samples from the

original dataset.

• R8, R52 are from Reuters which is a topic classification dataset with 8 classes and

52 classes. 3,000 samples from each dataset are selected.

• MR(Pang and Lee, 2005) is a binary classification dataset about movie comments

and we use all samples from the dataset.

• Ohsumed is a medical dataset with 23 classes, and we select 3,000 samples from

the original dataset.
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• Agnews(Zhang et al., 2015) is a 4-class news classification dataset and 6,000 samples

are selected.

• Twitter nltk is a binary classification sentiment analysis from Twitter, we sampled

1,500 positive samples and 1,500 test samples from the original dataset.

• Waimai is a binary sentiment analysis dataset about food delivery service comments

from a Chinese online food ordering platform. The dataset is in Chinese and pre-

tokenized. We use all samples from the original dataset.

The links for Datasets:

• 20NG: http://qwone.com/~jason/20Newsgroups/

• R8, R52: https://www.cs.umb.edu/~smimarog/textmining/datasets/

• MR: http://www.cs.cornell.edu/people/pabo/movie-review-data/

• Ohsumed: http://disi.unitn.it/moschitti/corpora.htm

• Agnews: http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles

• Twitter nltk: http://nltk.org/howto/twitter.html

• Waimai: https://github.com/SophonPlus/ChineseNlpCorpus/

4.4.2 Baselines

We aim to compare ME-GCN with state-of-the-art semi-supervised text classification models,

which do not use any external resources. Additionally, we also include four baseline models,

which use pretrained embedding or language models: CNN-Pretrained, LSTM-Pretrained,

BERT, and TMix.

• TF-IDF+LR,TF-IDF+SVM: Term frequency inverse document frequency for fea-

ture engineering with Logistic Regression or SVM with RBF kernel.

• CNN-Rand, CNN-Pretrained: Text-CNN (Kim, 2014) is used as the classifier.

Both CNN-Rand using randomly initialized word embedding and CNN-Pretrained

using pretrained word embedding are evaluated. We used English Glove-pretrained

and Chinese Word Vectors (Li et al., 2018b) for Chinese dataset-zh.

http://qwone.com/~jason/20Newsgroups/
https://www.cs.umb.edu/~smimarog/textmining/datasets/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://disi.unitn.it/moschitti/corpora.htm
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles
http://nltk.org/howto/twitter.html
https://github.com/SophonPlus/ChineseNlpCorpus/
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• LSTM-Rand, LSTM-Pretrained: We apply the same setup as the CNN model, but

with Long Short-Term Memory (LSTM).

• TextGCN: We follow the same hyperparameters of the TextGCN (Yao et al., 2019).

• BERT: BERT (Devlin et al., 2019) is a pre-trained model which has achieved

good performance in text classification. We use the BERTBASE in our experiments

(‘bert-base-chinese’ model from huggingface is used for Chinese)

• TMix: TMix(Chen et al., 2020) generates new training text data by interpolating

over labelled text encoded using BERT hidden representation and training on the

generated text data for text classification. We use the default setting provided in the

official GitHub.

The links for Baseline Models:

• TextCNN: https://github.com/DongjunLee/text-cnn-tensorflow

• TextGCN: https://github.com/yao8839836/text_gcn

• BERT BASE: https://huggingface.co/bert-base-uncased

• Tmix: https://github.com/GT-SALT/MixText

• Chinese BERT: https://huggingface.co/bert-base-chinese

• GloVe-pretrained: https://nlp.stanford.edu/projects/glove/

• Chinese Word Vectors: https://github.com/Embedding/Chinese-Word-Vectors

4.4.3 Settings

All the models are trained by using 16 Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz and

NVIDIA Titan RTX 24GB. Before training, words occurring no more than 5 times have been

excluded. Both word2vec and Dec2vec are trained on the corpus we get using gensim package

with window_size = 5 and iter = 200. The initial feature dimension for node and document

is set to d0 = 25, which is the same as the multi-dimension number for edge features and the

multi-stream number T in ME-GCN learning. Different multi-stream numbers are tested and

discussed in 4.5.3. The threshold u = 5 is used for document-document edge construction.

We use two-layers of multi-stream GCN learning with dl1ms = 25 (thus dl1 = 625) for the first

https://github.com/DongjunLee/text-cnn-tensorflow
https://github.com/yao8839836/text_gcn
https://huggingface.co/bert-base-uncased
https://github.com/GT-SALT/MixText
https://huggingface.co/bert-base-chinese
https://nlp.stanford.edu/projects/glove/
https://github.com/Embedding/Chinese-Word-Vectors
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TABLE 4.2. Best hyperparameters for each dataset

20NG R8 R52 Ohsumed
# Stream 30 20 25 30

Document Threshold 15 10 15 5
Pooling Method avg avg max avg

Accuracy 0.2861 0.8679 0.7828 0.2740

MR Agnews Twit nltk Waimai(zh)
# Stream 10 20 25 30

Document Threshold 5 5 3 3
Pooling Method max avg max max

Accuracy 0.6811 0.8043 0.8232 0.8393

multi-stream GCN layer and dlOms = C(no. of label in the datasets) for the output layer. In the

training process, following Liu et al. (2020), we use the dropout rate as 0.5 and learning rate

as 0.002 with Adam optimizer. The number of epochs is 2000 and 10% of the training set is

used as the validation set for early stopping when there is no decrease in the validation set’s

loss for 100 consecutive epochs.

The tokenizer used:

• English Tokenizer - NLTK: https://www.nltk.org/api/nltk.tokenize.html

• Chinese Tokenizer - Jieba: https://github.com/fxsjy/jieba

4.4.4 Hyperparemeter Search

For each dataset, we use grid search to find the best set of hyperparameters and select the base

model based on the average accuracy by running each model 5 times. The number of streams:

5,10,20,25,30,40,50. The document edge threshold: 3,5,10,15. The pooling method: max

pooling, min pooling, and average pooling. The number of hyperparameter search trials is

72(= 6 ∗ 4 ∗ 3) for each dataset. The best hyperparameters for each dataset and their average

accuracy on the test set shows in Table 4.2. And the trend of validation performance is very

similar to the testing performance trend.

https://www.nltk.org/api/nltk.tokenize.html
https://github.com/fxsjy/jieba
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4.5 Results Analysis

TABLE 4.3. Test accuracy comparison with baselines on benchmark datasets.
The bottom row shows the best test accuracy from our proposed model using
either max pooling or average pooling. The comparison of our model perform-
ance for each dataset using the three pooling methods is provided in Table 4.4.
The second best is underlined. Pre. is short for Pretrained.

Methods Pre. 20NG R8 R52 Ohsumed
TFIDF + SVM ✗ 0.2529 0.7246 0.5932 0.1589
TFIDF + LR ✗ 0.2633 0.7249 0.6332 0.1798
CNN - Rand ✗ 0.0768 0.7219 0.6325 0.1889
CNN - Pre. ✓ 0.2380 0.7428 0.6896 0.2458
LSTM - Rand ✗ 0.0545 0.6788 0.4253 0.1319
LSTM - Pre. ✓ 0.0593 0.6919 0.5285 0.0948
TextGCN ✗ 0.1188 0.8628 0.4847 0.1612
BERT ✓ 0.1347 0.5148 0.6291 0.1464
TMix ✓ 0.2286 0.7322 0.6195 0.1721
Our ME-GCN ✗ 0.2861 0.8679 0.7828 0.2740

Methods Pre. MR Agnews Twit nltk Waimai(zh)
TFIDF + SVM ✗ 0.5884 0.4241 0.5737 0.7521
TFIDF + LR ✗ 0.5871 0.5370 0.5791 0.7381
CNN - Rand ✗ 0.5641 0.3825 0.5822 0.7784
CNN - Pre. ✓ 0.6005 0.6636 0.6088 0.7926
LSTM - Rand ✗ 0.5442 0.3444 0.5458 0.6458
LSTM - Pre. ✓ 0.5933 0.5815 0.6098 0.6663
TextGCN ✗ 0.6222 0.7420 0.7806 0.8065
BERT ✓ 0.7666 0.7261 0.7024 0.8248
TMix ✓ 0.6267 0.8025 0.6111 0.6376
Our ME-GCN ✗ 0.6811 0.8043 0.8232 0.8393

4.5.1 Performance Evaluation

Table 4.3 presents a comprehensive performance experiment, conducted on the benchmark

datasets. The bottom row shows the accuracy from our best models using either max or

average pooling.1

Overall, our proposed model significantly outperforms the baseline models on all eight data-

sets, demonstrating the effectiveness of our ME-GCN on semi-supervised text classification
1The detailed comparison of pooling method variants can be found in Table 4.4.
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TABLE 4.4. Test accuracy of ME-GCN with three different pooling methods,
max, average, and min pooling

Pooling Method 20NG R8 R52 Ohsumed
Max Pooling 0.2775 0.8473 0.7828 0.2475
Avg Pooling 0.2861 0.8679 0.7675 0.2740
Min Pooling 0.0424 0.2987 0.2550 0.0294

Pooling Method MR Agnews Twit nltk Waimai(zh)
Max Pooling 0.6811 0.8043 0.8232 0.8393
Avg Pooling 0.6658 0.7911 0.8205 0.8303
Min Pooling 0.5000 0.2005 0.5000 0.6663

for various lengths of text. With in-depth analysis, CNN/LSTM-Rand is quite low in perform-

ance on several datasets but increases significantly when using pretrained embeddings. While

TextGCN achieves better accuracy than the above baselines on most datasets, the performance

is all lower than ME-GCN. This shows the efficiency of preserving rich information using

multi-dimensional edge features.

The merit of pre-training stands out with BERT and TMix, producing better accuracy than

the baseline TextGCN on most datasets. Especially, BERT achieves the best and second-best

performance on MR and Waimai, which are short-text sentiment analysis datasets. This would

be because of the two aspects of sentiment classification: (1) compared to topic-specific

text classification, sentiment analysis task may benefit from the pretrained general semantics

learned from a large external text; (2) word order matters for sentiment analysis, which

could be missing in GNNs. Nevertheless, our ME-GCN, with no external resources, still

outperforms those pretrained models in seven datasets, illustrating the potential superiority of

self-exploration on the corpus via a multi-dimensional edge graph in comparison to pretraining

on large external resources.

4.5.2 Learning and Pooling Variant Testing

We compare ME-GCN with three different pooling approaches (max, average, and min

pooling) and the result is shown in Table 4.4. Most datasets produce better results when using

max pooling, and the result with max and average pooling outperforms that with min pooling.
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TABLE 4.5. Test accuracy of ME-GCN with two multi-stream learning meth-
ods, shared and separated learners.

Learning Methods 20NG R8 R52 Ohsumed
Separated Learning 0.2861 0.8679 0.7828 0.2740

Shared Learning 0.1582 0.8016 0.6554 0.2635

Learning Methods MR Agnews Twit nltk Waimai(zh)
Separated Learning 0.6811 0.8043 0.8232 0.8393

Shared Learning 0.6575 0.6993 0.7037 0.8137

This is very obvious because the min pooling captures the minimum value of each graph

component.

We also compare two multi-stream graph learning methods, including separated and shared

stream learning to examine the effectiveness of ME-GCN learning with multi-dimensional

edge features. Table 4.5 presents that the separated stream learners significantly outperform

the shared learners. This shows it is much more efficient to learn each dimensional stream

with an individual learning unit and initially understand the local structure, instead of learning

all global structures at once.

4.5.3 Impact of Edge Feature Dimension

To evaluate the effect of the dimension size of the edge features, we tested ME-GCN with

different dimensions. Figure 4.2 shows the test accuracy of our ME-GCN model on the four

datasets, including R8, R52, MR, and Waimai(zh). The bottom right corner for each subgraph

includes the average number of words per document.

We noted that the test accuracy is related to the average number of words per document in the

corpus. For instance, for ‘MR’ (avg #: 18.4), test accuracy first increases with the increase

of the size of edge feature dimensions, reaching the highest value at 10; it falls when its

dimension is higher than 15. However, R8 and R52 (avg #: 84.2 and 104.5) got the highest

value at 20 or 25. This is consistent with the intuition that the average number of words per

document in the corpus should align with the dimension size of the edge features in ME-GCN.
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(A) R8 (B) R52

(C) MR (D) Waimai(zh)

FIGURE 4.2. Test accuracy by varying edge feature dimensions. The bottom
right corner shows the average number of words per document in each corpus.

The trend is different in waimai dataset as it is Chinese, this is because different languages

would have different natures of choosing the efficient edge feature dimension.

Moreover, in order to analyse the impact of the edge feature dimension, we present an

illustrative visualisation of the document embeddings learned by ME-GCN. We use the

t-SNE tool (Van der Maaten and Hinton, 2008) in order to visualise the learned document

embeddings. Figure 4.3 shows the visualisation of test set document embeddings in AgNews

learned by ME-GCN (second layer) 5 and 25 dimensional node and edge features. The

AgNews has 4 classes and the average number of words per document is 35.2. Instead of

dim=5, having dim=25 as edge features would be better to separate them into four classes.
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(A) Dim = 5, first layer (B) Dim = 5, second layer

(C) Dim = 25, first layer (D) Dim = 25, second layer

FIGURE 4.3. t-SNE visualisation of test set document embeddings in AgNews
(4 classes). The (a) and (b) show second-layer document embeddings learned
by 5 and 25 dimensional node and edge features respectively.

4.5.4 Impact of Ratio of Labelled Docs

We choose 3 representative methods with the best performance from Table 4.3: CNN-

Pretrained, TextGCN and our ME-GCN, in order to study the impact of the number of

labelled documents. Particularly, we vary the ratio of labelled documents and compare their

performance on the two datasets, Twitter nltk and R52, that have the smallest number and

largest number of classes. Figure 4.4 reports test accuracies with 1%, 10%, and 33% of the

R52 and Twitter nltk training set. We note that our ME-GCN outperforms all other methods

consistently. For instance, ME-GCN achieves a test accuracy of 0.8232 on Twitter nltk with

only 1% training documents and a test accuracy of 0.8552 on R52 with only 10% training

documents which are higher than other models with even the 33% training documents. It
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(A) R52 (B) Twitter nltk

FIGURE 4.4. Test accuracy comparison with the different number of labelled
documents.

TABLE 4.6. Test accuracy comparison of our ME-GCN model with different
word embedding techniques to train word node embeddings and word-word
multi-dimensional edge features.

Word Embedding 20NG R8 R52 Ohsumed
Word2Vec 0.2861 0.8679 0.7828 0.2740

fastText 0.2510 0.8394 0.7783 0.2550
GloVe 0.2526 0.8247 0.7835 0.2832

Word Embedding MR Agnews Twit nltk Waimai(zh)
Word2Vec 0.6811 0.8043 0.8232 0.8393

fastText 0.6727 0.7812 0.8333 0.8191
GloVe 0.6895 0.7628 0.8341 0.8298

demonstrates that our method can more effectively take advantage of the limited labelled data

for text classification.

4.5.5 Comparison of Embedding Variants

ME-GCN apply a Word2Vec CBOW in order to train the word node embedding and the related

multi-dimensional edge feature. We compare our model with three different word embedding

techniques, Word2Vec, fastText, and Glove in Table 4.6. We noted that using Word2Vec and

Glove, word-based models, is comparatively higher than applying the fastText, a character
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TABLE 4.7. Number of Parameters and Running time for each dataset

20NG R8 R52 Ohsumed

Word2vec # Parameters 304,750 217,650 230,950 432,950
Running Time(s) 118 25 76 140

Doc2vec # Parameters 454,750 367,650 380,950 582,950
Running Time(s) 104 35 118 272

ME-GCN # Parameters 328,125 140,625 828,125 375,000
Running Time(s) 198 16 164 286

Total # Parameters 1,087,625 725,925 1,440,025 1,390,900
Running Time(s) 420 76 358 698

MR Agnews Twit nltk Waimai(zh)

Word2vec # Parameters 225,050 268,000 31,700 548,950
Running Time(s) 71 83 20 74

Doc2vec # Parameters 758,150 568,000 181,700 1,148,300
Running Time(s) 270 140 29 312

ME-GCN # Parameters 46,875 78,125 46,875 46,875
Running Time(s) 120 612 14 610

Total # Parameters 1,030,075 914,125 260,275 1,744,125
Running Time(s) 461 835 63 996

n-gram-based model. This would be affected because the node and edge of ME-GCN are

based on words, not characters.

4.5.6 Number of parameters

The number of parameters for each part of the model is shown as follows2:

• Word2vec: 2UT

• Doc2vec: 2T (U +K)

• ME-GCN: T 2dl1ms(1 + C)

And Table 4.7 shows the number of parameters and training time when using the default

hyperparameters. A comparison of the number of parameters between TextGCN and our

ME-GCN is shown in Figure 4.5.

2The notations can be found in Chapter 4.3
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FIGURE 4.5. Number of Parameters Comparison
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4.6 Conclusion

In this study, we introduced the ME-GCN (Multi-dimensional Edge-enhanced Graph Con-

volutional Networks) for semi-supervised text classification, which takes full advantage of

both limited labelled and large unlabeled data by rich node and edge information propagation.

We propose corpus-trained multi-dimensional edge features in order to efficiently handle the

distance/closeness between words and documents as multi-dimensional edge features, and all

graph components are based on the given text corpus only. ME-GCN demonstrates promising

results by outperforming numerous state-of-the-art methods on eight semi-supervised text

classification datasets consistently. In the future, it would be interesting to apply it to other

natural language processing tasks.



CHAPTER 5

InducT-GCN: Inductive Graph Convolutional Networks for Text

Classification

Text classification aims to assign labels to textual units by making use of global information.

Recent studies have applied graph neural network (GNN) to capture the global word co-

occurrence in a corpus. Existing approaches require that all the nodes (training and test) in

a graph are present during training, which are transductive and do not naturally generalise

to unseen nodes. To make those models inductive, they use extra resources, like pretrained

word embedding. However, a high-quality resource is not always available and hard to train.

Under extreme settings with no extra resources and a limited amount of training set, can we

still learn an inductive graph-based text classification model? In this chapter, we introduce a

novel inductive graph-based text classification framework, InducT-GCN (InducTive Graph

Convolutional Networks for Text classification). Compared to transductive models that require

test documents in training, we construct a graph based on the statistics of training documents

only and represent document vectors with a weighted sum of word vectors. We then conduct

one-directional GCN propagation during testing. Across five text classification benchmarks,

our InducT-GCN outperformed state-of-the-art methods that are either transductive in nature or

pre-trained additional resources. We also conducted scalability testing by gradually increasing

the data size and revealed that our InducT-GCN can reduce the time and space complexity.

78
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5.1 Introduction

Many recent text classification studies have focused on learning text representations using

sequence-based learning models, such as convolutional neural networks (CNN) (Kim, 2014)

or recurrent neural networks (RNN) /long short term memory (LSTM) (Zhou et al., 2016).

The CNN/RNN-based models focus on the locality and sequence of text and mainly aim to

detect semantic and syntactic information in local consecutive word sequences. It tends to

neglect global word co-occurrence in a corpus and ignore non-consecutive and long-distance

semantic information (Peng et al., 2018). However, those models need a relatively large

training set to perform better. Still, most real-world cases (e.g., specific domains or some

low-resource languages) have a very limited amount of training set (limited labelled data).

Recently, pre-trained models, like BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019),

have achieved state-of-the-art performance on several NLP tasks with a limited amount of

training data. However, those models require much computation and external resources for

pre-training, which are not always available.

Yao et al. (2019) proposed TextGCN and performed well, especially when the percentage

of training data is low without using any external resources and with low computation costs.

It is an initial text GNN framework, which conducts a straightforward manner of graph

construction and applies a GCN-learning(Kipf and Welling, 2017) to deal with complex

structured textual data and prioritise global feature exploitation. More recent studies (Wu et

al., 2019a; Liu et al., 2020; Zhu and Koniusz, 2021) utilise more contextual information or

optimise the computation.

However, most graph models are intrinsically transductive. The learned node representa-

tions/embeddings for words/documents are not naturally generalisable to unseen words/documents,

making it challenging to apply in the real world. The transductive nature of these graph-

based learning models requires relatively large computational space when the corpus size is

large. Therefore, an inductive model is needed. To expand a transductive graph-based text

classification into an inductive model, we mainly consider the following three requirements:
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• The inductive learning model must not include any test set information during the

training.

• The inductive model must not re-train the model on the whole new graph when it

learns a new sample.

• We use corpus-level graph-based text classification to make an inductive model. It

nicely covers the benefit of GNN, which captures the complex global structure of

the whole corpus and prioritises global feature exploitation.

In this chapter, we propose a novel inductive graph-based text classification framework,

called InducT-GCN (InducTive Graph Convolutional Networks for Text classification). We

introduce a new inductive graph framework of graph construction, learning, and testing, and

it can expand to any transductive GCN-based text classification model. The chapter includes

the following contributions:

• To the best of our knowledge, we introduce the first inductive corpus-level GCN-

based text classification framework without using extra resources.

• We compare our InducT-GCN on five benchmark datasets under the limited la-

belled data settings. InducT-GCN outperforms on four of them, even beating some

transductive baselines integrated using external resources.

• We introduce a new way to make transductive GCN-based text classification mod-

els inductive, which improves the performance and reduces the time and space

complexity.
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5.2 Related Work

5.2.1 Graph Neural Networks

Graph Neural Network (GNN)s (Kipf and Welling, 2017) have been effective at tasks to

have rich relational structure and can preserve global structure information of a graph in

graph embeddings by aggregating first-order neighbourhood information. (Kipf and Welling,

2017) introduced Graph Convolutional Networks (GCN) on transductive classification tasks.

GraphSage (Hamilton et al., 2017a), and FastGCN (Chen et al., 2018) tailored GCNs on

inductive representation learning framework with sampling methods. Graph Attention Net-

works (GAT) (Veličković et al., 2018) applied the Attention to specify different weights to

different nodes in a neighbourhood. More recent GCN studies for transductive and inductive

frameworks have been proposed. For transductive-based GCN, SGC (Wu et al., 2019a) was

introduced to reduce the complexity and S2GC (Zhu and Koniusz, 2021) was proposed to

solve over-smoothing problems. Some inductive-based models, DeepGL (Rossi et al., 2020)

and TGAT (Xu et al., 2020b), were introduced to cover different graph tasks, including

transfer learning and topology learning.

5.2.2 Text Classification Using GNN

GNNs have received attention in various NLP tasks (Bastings et al., 2017; Tu et al., 2019; Li

et al., 2019b; Yao et al., 2019; Cao et al., 2019; Yang et al., 2021), including text classification.

The GNN-based text classification models can be categorised into two types, Document-level

and Corpus-level approaches.

Document-level GNN in Text Classification Several graph-based text classification models

build a graph for each document using words as nodes (Defferrard et al., 2016; Peng et al.,

2018; Zhang et al., 2018a; Nikolentzos et al., 2020; Huang et al., 2019; Zhang et al., 2020b).

Word nodes are represented by external resources, pre-trained embedding, such as Word2vec

(Mikolov et al., 2013), and Glove (Pennington et al., 2014). The edges are built either using

word co-occurrence information(Peng et al., 2018; Zhang et al., 2020b) or simply connecting
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consecutive words in a sentence(Huang et al., 2019). Hence, they do not consider explicit

global structure information of a corpus/entire dataset during their model training/learning.

Corpus-level GNN in Text Classification TextGCN (Yao et al., 2019) was proposed to build

a graph for the entire text corpus with documents and words as nodes. Hence, it captures

the global information of an entire corpus and conducts node(document) classification. SGC

(Wu et al., 2019a) and S2GC (Zhu and Koniusz, 2021) constructed a graph as TextGCN, but

proposed different information propagation approaches. Both TensorGCN(Liu et al., 2020)

and TextGTL(Li et al., 2021a) proposed three graphs to cover three different aspects. Note

that all three graphs are based on an entire corpus and use the same propagation as GCN

(Kipf and Welling, 2017). TG-Transformer(Zhang and Zhang, 2020) applied transformer

with pretrained GloVe embeddings to the TextGCN, and BERTGCN(Lin et al., 2021) applied

BERT embedding to the TextGCN. All the above models are transductive-based approaches

as GCN (Kipf and Welling, 2017). However, our model InducT-GCN, an inductive graph-

based text classification framework, constructs a corpus-level graph but adopts the nature of

inductive learning to generalise to unseen nodes naturally.
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5.3 InducT-GCN

We propose an Inductive Graph Convolutional Network (GCN) for text classification, named

‘InducT-GCN’, which can be an extension of the traditional transductive GCN-based text

classification models. We adopt the traditional transductive GCN-based text classification

models, including TextGCN(Yao et al., 2019) and SGC(Wu et al., 2019a), and focus on

expanding those models to efficient inductive learning models. This section demonstrates the

proposed inductive learning components applied to TextGCN.

5.3.1 Revisit TextGCN

TextGCN is a GCN-based text classification model that uses a large text graph based on the

whole corpus. To understand the concept properly, we first explore the GCN process.

Graph Convolutional Networks(GCN) Formally, considering a graph G = (V,E,A), where

V (|V | = n) is a set of nodes, E is a set of edges, and A ∈ Rn×n is an adjacency matrix

representing the edge values between nodes. The propagation rule of each hidden layer is:

H(l+1) = f(H(l), A) = σ(ÃH(l)W (l)) (5.1)

where Ã = D− 1
2AD− 1

2 is a normalized symmetric matrix for A and Dii = ΣjAij as a degree

matrix of adjacency matrix A. H(l) is lth hidden layer input and W (l) is the weight to be

learned in this layer. σ is an activation function, e.g. ReLU: σ(x) = max(0, x).

TextGCN Followed by the GCN(Kipf and Welling, 2017), TextGCN constructs a large corpus-

level graph but with textual information, documents and words as nodes so it can model the

global word-document co-occurrence. The constructed graph includes documents and words

nodes from training sets and test sets. TextGCN aims to model the global word-document

occurrence with two major edges:

• word-word edge: calculated by co-occurrence information point-wise mutual inform-

ation(PMI)(Aji and Kaimal, 2012).

• document-word edge: TF-IDF.
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One-hot vectors are fed into a two-layer GCN model to jointly learn the embedding for the

documents and words. The representations on the document nodes in the training set are to

train the classification model while those in the test set are used for prediction.

5.3.2 Tranductive and Inductive Nature

This section discusses the nature of transductive and inductive GCN learning for text clas-

sification and what inductive learning aspect we would like to explore. Most GCN text

classification models, including TextGCN(Yao et al., 2019), SGC(Wu et al., 2019a), or S2GC

(Zhu and Koniusz, 2021), are inherently transductive by using the whole corpus, including

training set and test set all time.

To expand those transductive models into an inductive learning nature, we fundamentally im-

prove two aspects as follows. First, the transductive GCN-based text classification models in-

clude documents from the training set and the test set when constructing a whole-corpus-based

textual graph for GCN learning. Hence, the learned GCN model will be influenced/generalised

by word/document information in the test set, which is supposed to be unseen nodes. Our

inductive GCN-based text classification model constructs a graph with only training document

information but does not consider any information from the test sets. We focus on generalising

to unseen nodes and aligning newly observed subgraphs to the node that the model has already

optimised.

Secondly, the transductive models learn the embedding for Vtrain, Vtest, Vword simultaneously

by using one-hot input vectors H(0) ∈ Rn×n. For any new test sample, the embedding should

be re-learned by re-training the model on the new graph. In this case, the re-learning/re-

training process does not perfectly fulfil the effective generalisation to unseen nodes. There-

fore, we develop a new graph construction and training/testing solution for inductive learning

instead of re-learning or re-training.
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5.3.3 InducT-GCN Graph Construction

5.3.3.1 Graph Nodes

Our inductive GCN-based text classification model, InducT-GCN, strictly does not consider

any information or statistics from the test set, which is supposed to be unseen nodes. Instead,

we construct the nodes only with training document information. Consider a set of nodes

V = {Vtrain, Vword} and the Vword are the unique words in the training documents. To define

input vector H(0) for graph nodes in the InducT-GCN graph, we consider two requirements:

(1)During the propagation phase, the graph is considered a homogeneous graph, which means

all the nodes are considered the same type without checking whether they are word nodes or

document nodes. Then all the input vectors for document nodes and word nodes should align

with each other. (2)Our InducT-GCN must not use one-hot vectors for representing document

nodes to avoid learning any representation on testing documents during training.

With this in mind, we propose a new document representation by focusing on the nature of

our proposed inductive learning idea. InducT-GCN generates document node representations

based on its word node vectors for the proper alignment between word and document rep-

resentation. We use a weighted average of word vectors to construct document node vectors,

and the key idea of this construction is applying TF-IDF weights. Formally, one-hot vectors

are used for representing word node vectors H(0)
i ,∀i ∈ Vword. For representing training docu-

ments node vectors H(0)
i ,∀i ∈ Vtrain, we use TF-IDF vectors. The values for each dimension

is TF-IDF values for the corresponding word in that specific document: H(0)
ij = TF-IDF(i, j)

where i and j are document and word, respectively. Assume H(0) ∈ Rn×|Vword|, where

n = |Vtrain|+ |Vword|. When two input documents are “w1 w1 w2 w3" and “w3 w4". Figure

5.1 visualise the input vector representation, where H
(0)
0 and H

(0)
1 are document vectors and

H
(0)
i ,∀i ∈ [2, 5] are word vectors.

5.3.3.2 Graph Edges

We focus on expanding corpus-level transductive GCN-based text classification to inductive

learning and select TextGCN(Yao et al., 2019) as one of its kind. Like TextGCN, we define
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FIGURE 5.1. Input Vectors Representations when two input documents are
“word1 word1 word2 word3" and “word3 word4".

two-edge types for the InducT-GCN graph: 1) Word-Word with PMI and 2) Word-Doc

edges with TF-IDF. Note that each node also connects to itself. PMI is calculated based

on the co-occurrence of a pair of words in a slicing window. Formally, it is calculated by:

PMI(i, j) = log p(i,j)
p(i)p(j)

where p(i, j) represents the co-occurrence probability of word i and

j and estimated by p(i, j) = #Co−occurrence
#Windows

, p(i) represents the probability of word i and

estimated by p(i) = #Occurrence
#Windows

. The graph is un-directed and all the edges are symmetrical.

The Adjacency Matrix A is calculated as:

Aij =



max(0,PMI(i, j)) i, j are words

TF-IDFi,j i is word, j is doc

1 i = j

0 otherwise

(5.2)

5.3.4 InducT-GCN Learning and Testing

After building the graph, we train it using a two-layer GCN as in (Kipf and Welling, 2017).

The first GCN layer learns the word embeddings. The dimension of the second GCN layer is

the number of classes of the dataset, and the output is fed into a softmax activation function.

For example, a binary classification task will result in the dimension of the second GCN layer
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as 2. The node representations on the training documents are used for cross-entropy loss

calculation and back-propagation. Formally, the propagation can be described as:

H(1) = σ(ÃH(0)W (0)) (5.3)

Z = softmax(ÃH(1)W (1)) (5.4)

where W (0) is a learned word embedding lookup table, and W (1) is learned weight matrix in

second layer. Loss is calculated by using cross-entropy between Zi and Yi, ∀i ∈ Vtrain.

In GCN, the propagation for each layer is conducted by updating the nodes with the weighted

sum of their first-order neighbours and the node itself. In order to make predictions on the

test set, the first-order and second-order neighbours’ representation for each test document

should be aggregated. Note that we utilise the test documents during the testing phase only,

so there is no need to update all the nodes in the graph during the propagation.

Instead, we conduct a one-direction propagation and only update test document nodes. Firstly,

H
(1)
i ,∀i ∈ Vword, W (0) and W (1) are recorded after training phase, and H

(1)
i ,∀i ∈ Vword is

notated as H(1)
word. Storing H

(1)
word enables InducT-GCN not to work on the training document

nodes during the test phase, so it saves computation resources. During the testing phase,

InducT-GCN supports batch testing(Hamilton et al., 2017a). For each batch of test document

node B ∈ Vtest, |B| = b, the edges EB between B and Vword are calculated using TF-IDF

with the document frequency of the training set.
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Algorithm 1 InducT-GCN Training and Testing Phase

Input: Training Graph G(V, Ã), V = {Vtrain, Vword}; Training input vectors H(0); Training

Labels {Yi,∀i ∈ Vtrain}; Adjacency Matrix for Test Batch Subgraph{AB, B ∈ Vtest}; Test

input vectors {H ′(0)
B , B ∈ Vtest}

Parameter: Weight matrices W (0) and W (1)

Output: Prediction Results {YB,∀B ∈ Vtest}

1: for epoch = 1, 2, . . . do
2: H(1) ← σ(ÃH(0)W (0))

3: Z ← softmax(ÃH(1)W (1))

4: L← CrossEntropy(Yi, Zi),∀i ∈ Vtrain

5: Update W (0) and W (1)

6: end for
7: H

(1)
word ← H

(1)
i , ∀i ∈ Vword

8: for Batch B in Vtest do
9: G′ ← {AB, H

(0)
word, H

′(0)
B }

10: H
′(1)
B ← GCN(G′,W (0))

11: G′′ ← {AB, H
(1)
word, H

′(1)
B }

12: YB ← argmax(GCN(G′′,W (1)))

13: end for

Test document input H ′(0)
B is also calculated using TF-IDF. The testing phase can be described

as:

AB = concat(EB, I) (5.5)

H
′(0)
word,B = concat(H

(0)
word, H

′(0)
B ) (5.6)

H
′(1)
B = σ(ABH

′(0)
word,BW

(0)) (5.7)

H
′(1)
word,B = concat(H

(1)
word, H

′(1)
B ) (5.8)

ZB = softmax(ABH
′(1)
word,BW

(1)) (5.9)

YB = argmax(ZB) (5.10)

where AB ∈ Rb×(|Vword|+b) stands for the weights of the weighted sum calculation and it can

be considered as an adjacency matrix for test batch subgraph. H
′(0)
B ∈ R(|Vword|+b)×|Vword|
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stands for the test batch input vectors in the subgraph. H
′(1)
B ∈ Rb×h is the updated test

document node embedding after the first layer of GCN, and h is the hidden dimension size.

Then, the stored H
(1)
word on the word nodes, which contain the first layer training documents

information, are used to propagate training documents information to the test document nodes

in the second layer. We formally describe the overall algorithms for the training and testing

phase of InducT-GCN in Algorithm 1.

5.3.5 Space and Time Analysis

Compared with TextGCN, InducT-GCN is more efficient both in time and space. For the

space complexity:

• Number of Parameters of InducT-GCN is |Vword| ∗h+h ∗ c while TextGCN requires

(|Vtrain|+|Vword|+|Vtest|)∗h+h∗c parameters. Meanwhile, |Vword| in InducT-GCN

is smaller than that in TextGCN.

• Graph Space complexity of InducT-GCN is O(|Vword|2 + |Vtrain| ∗ |Vword|) and

for TextGCN, it is O(|Vword|2 + (|Vtrain| + |Vtest|) ∗ |Vword|). Similarly, |Vword| in

InducT-GCN is smaller than TextGCN.

Compared with TextGCN, our InducT-GCN is faster in three ways:

• When constructing the graph, the time complexity of PMI is O(|Vword|2∗#Windows),

and it is smaller for InducT-GCN.

• The training time is shorter for InducT-GCN since the graph is smaller.

• When testing on new samples, TextGCN requires retraining while InducT-GCN can

make predictions without retraining.
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5.4 Evaluation Setup

We evaluate the performance of our InducT-GCN on text classification and examine the

effectiveness of the proposed inductive learning approach.

TABLE 5.1. Summary statistics of datasets.

Dataset # Train # Test # Word # Class Avg Len
R8 274 2,189 1,878 8 62.22

R52 326 2,568 2,568 52 66.98
Ohsumed 167 4,043 2,667 23 123.7

20NG 113 7,532 2,839 20 163.5
MR 355 3,554 605 2 7.25

5.4.1 Dataset

We first evaluate InducT-GCN on 5(five) publicly available text classification benchmark

datasets, including R8, R52, Ohsumed, 20NG, and MR. To test in the limited labelled data

environment, we select 5% of the full training set (1% for 20NG, due to the size) and remain

the original test size. The detailed statistics of datasets can be found in Table 5.1. We also

apply the data augmentation methods on R8 test set to evaluate on the larger test sets, called

R8A.

• R8, R52 are two subsets of the Reuters dataset and focus on the topic classification.

• Ohsumed is produced by the MEDLINE database, containing cardiovascular disease

abstracts.

• 20NG(20 NewsGroup) is a 20 class-based news classification dataset.

• MR(Movie Review) is a binary (positive and negative) sentiment polarity analysis.

• R8A: To evaluate our InducT-GCN scalability in the larger test set, we apply a data

augmentation technique.

Nlpaug(Ma, 2019) is applied for augmenting the R8 test set. To achieve this, we randomly

choose one of the four options:

(1) randomly deleting a word;
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(2) adding a word based on Word2Vec embedding similarity;

(3) substituting a word using Synonyms in WordNet (Miller, 1995);

(4) randomly swapping two words. The detailed evaluation can be found in Section

5.5.2.

All datasets are preprocessed based on (Kim, 2014). We remove the words if shown less

than twice in the training documents since words only shown once can not work as a bridge

between two document nodes. Words listed in the NLTK stopwords list are also removed. We

apply the same preprocessing method for all experiments.

5.4.2 Baselines

We compare InducT-GCN with baselines, mainly those models with no external resources

and learning inductively. However, due to the limited number of baselines, we include the

baselines with pre-trained word embeddings, such as CNN (Pretrain), LSTM (Pretrain), and

TextING. We also add transductive models, including TextGCN and SGC.

• TF-IDF + SVM/LR applies TF-IDF vectors and uses Support Vector Machine

(SVM) or Logistic Regression (LR) as classifiers respectively.

• CNN/LSTM(Kim, 2014; Liu et al., 2016) apply CNN and Long Short-Term Memory

with randomly initialised word embeddings or pretrained GloVe(Pennington et al.,

2014) embeddings.

• TextGCN/SGC/TextING (Yao et al., 2019; Wu et al., 2019a; Zhang et al., 2020b)

are GNN text classification models. TextGCN and SGC are corpus-level GNN and

TextING is document-level GNN.

5.4.3 Settings

We apply the same set of hyper-parameters to all datasets without hyper-parameter tuning for

a fair comparison. For TextGCN(Yao et al., 2019), SGC(Wu et al., 2019a), our InducT-GCN

and InducT-SGC, as described in (Yao et al., 2019), we applied two layers graph convolutional,
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and the hidden dimension is 200. Adam optimizer with a learning rate of 0.02 is used for

training. For each experiment, followed by Kipf and Welling (2017), 200 epochs are set to

be the maximum number of epochs, and early stopping of 10 epochs is applied. 10% of the

training set is randomly selected as the validation set. An early stopping mechanism is also

applied for other baseline models by using the default hyperparameters.

Followed by previous works(Yao et al., 2019; Wu et al., 2019a; Zhang et al., 2020b), we use

the accuracy as an evaluation metric and produce the average and standard deviation of the

ten-time running results for each testing result.
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5.5 Result

TABLE 5.2. Comparison of with Baseline on Limited Labeled Data. For
20NG dataset, TextING(Zhang et al., 2020b) has out of Memory issue and
they also have not tested on the 20NG either. The column PT. refers to the
model applying any pre-trained embedding.

Method PT. R8 5% R52 5% Ohsumed 5%
TF-IDF + SVM ✗ 0.8054 ± 0.0000 0.6830 ± 0.0000 0.1476 ± 0.0000

TFIDF + LR ✗ 0.8090 ± 0.0000 0.6869± 0.0000 0.1813 ± 0.0000
CNN-rand ✗ 0.8107 ± 0.0110 0.6854 ± 0.0100 0.1586 ± 0.0079

CNN (Pretrain) ✓ 0.9052 ± 0.0097 0.7708 ± 0.0181 0.3411 ± 0.0370
LSTM-rand ✗ 0.7392 ± 0.0146 0.6364 ± 0.0060 0.1614 ± 0.0085

LSTM (Pretrain) ✓ 0.7916 ± 0.0499 0.6667 ± 0.0303 0.2486 ± 0.0392
TextGCN (Yao et al., 2019) ✗ 0.9116 ± 0.0127 0.7885 ± 0.0751 0.2225 ± 0.1138

SGC (Wu et al., 2019a) ✗ 0.8955 ± 0.0098 0.7725 ± 0.0189 0.2474 ± 0.0392
TextING (Zhang et al., 2020b) ✓ 0.8648 ± 0.0414 0.7465 ± 0.0298 0.3026 ± 0.0235

InducT-SGC ✗ 0.9045 ± 0.0046 0.8046 ± 0.0066 0.3106 ± 0.0061
InducT-GCN ✗ 0.9155 ± 0.0051 0.8135 ± 0.0384 0.3563 ± 0.0078

Method PT. 20NG 1% MR 5%
TF-IDF + SVM ✗ 0.1289 ± 0.0000 0.5537 ± 0.0000

TFIDF + LR ✗ 0.1860 ± 0.0000 0.5967 ± 0.0000
CNN-rand ✗ 0.1390 ± 0.0179 0.5485 ± 0.0122

CNN (Pretrain) ✓ 0.2969 ± 0.0277 0.7009 ± 0.0060
LSTM-rand ✗ 0.0766 ± 0.0063 0.5301 ± 0.0191

LSTM (Pretrain) ✓ 0.1010 ± 0.0220 0.6680 ± 0.0198
TextGCN (Yao et al., 2019) ✗ 0.2198 ± 0.1293 0.5341 ± 0.0216

SGC (Wu et al., 2019a) ✗ 0.2948 ± 0.0342 0.6015 ± 0.0051
TextING (Zhang et al., 2020b) ✓ N/A 0.6117 ± 0.0342

InducT-SGC ✗ 0.2990 ± 0.0251 0.6017 ± 0.0048
InducT-GCN ✗ 0.3461 ± 0.0337 0.6037 ± 0.0038

5.5.1 Performance Evaluation

A comprehensive experiment is conducted on the five benchmark datasets in the limited

environment as mentioned in Section 5.4.1. The result presented in Table 5.2 shows that our

proposed InducT-GCN significantly outperforms all baselines in terms of average accuracy on

four datasets in R8, R52, Ohsumed, and 20NG. Note that the baselines include transductive

graph-based models, such as TextGCN and SGC. Meanwhile, CNN, LSTM, and TextING use
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external resources, like pre-trained word embeddings. Meanwhile, the standard derivation is

smaller than most baseline models, showing the robustness of our model.

For a more in-depth performance analysis comparing our InducT-GCN with baseline models,

we can highlight that this result shows the effectiveness of the proposed InducT-GCN on long

text datasets. While the average lengths of 20NG and Ohsumed are longer than 100 and those

of R8 and R52 are still longer than 60, MR is less than 10, which can be considered as an

extremely short text dataset. We found that models with pre-trained word embeddings GloVe

perform better on short text documents. This is mainly because it would be challenging to

recognise the global word co-occurrence with this short text document length, leading to

fewer connections (bridging) between word nodes in corpus-level text graphs. Nevertheless,

our InducT-GCN performs the best among the models with no pre-trained embeddings.

With our Inductive graph construction and learning framework, it is possible to expand to any

corpus-level and transductive GCN-based text classification models, such as TextGCN(Yao et

al., 2019), SGC(Wu et al., 2019a), TensorGCN(Liu et al., 2020), and S2GC (Zhu and Koniusz,

2021). This section reports the generalisation capability of our inductive graph construction

and learning framework. We now expand our inductive framework to another corpus-level

graph-based model, SGC (Wu et al., 2019a), and called InducT-SGC. Table 5.2 also visualises

the comparison of the original transductive SGC models and our InducT-SGC. As shown in

the table, our InducT-SGC produces much higher performance than the original SGC when

the labelled data are limited. The performance improvement between both pairs of the original

transductive and our inductive model, TextGCN-to-InducT-GCN and SGC-to-InductSGC,

clearly shows the generalisation capability of our proposed inductive framework. It can also

be applied to other corpus-level graph-based text classification models in the future.

5.5.2 Impact of Test Size

As mentioned earlier, we use the R8A (R8 with a data augmentation) to show the scalability

of our proposed Inductive learning framework by comparing TextGCN and InducT-GCN

in the larger text set. Figure 5.2a shows the comparison of TextGCN and InducT-GCN on
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(A) TextGCN (B) SGC

FIGURE 5.2. Test accuracy with different test size on R8A by using TextGCN,
SGC and our proposed Inductive model.

TABLE 5.3. Test Accuracy with Different Initialized Embedding Method

Embedding R8 5% R52 5% Ohsumed 5%
Random 0.9155 ± 0.0051 0.8135 ± 0.0384 0.3563 ± 0.0078

Pretrained Word2Vec 0.9124 ± 0.0043 0.8290 ± 0.0084 0.3544 ± 0.0305
Pretraind GloVe 0.9159 ± 0.0102 0.8266 ± 0.0090 0.3514 ± 0.0186

Embedding 20NG 1% MR 5%
Random 0.3461 ± 0.0337 0.6037 ± 0.0038

Pretrained Word2Vec 0.3476 ± 0.0086 0.6003 ± 0.0045
Pretraind GloVe 0.3662 ± 0.0197 0.6051 ± 0.0055

different test sizes, with 1 to 5 times (2,189, 4,378, 6,567, 8,756, 10,945) of the R8 original

test set size. The larger the test size, the larger the gap between TextGCN and InducT-GCN.

TextGCN produces worse performance with the largest test size. This is mainly because only

a small proportion of the document nodes would contribute to the gradient in TextGCN with

a larger test set. Especially during the training phase, it is difficult for TextGCN to learn

embeddings of those test document nodes having fewer connections with word nodes by

backpropagation. Moreover, we found that the performance of our InducT-GCN decreased

only a little (less than 0.5) when the test size grew. We also conducted the same evaluation

based on SGC by applying our Inductive graph construction and learning framework to SGC,

InducT-SGC. Like the result that our InducT-GCN produced, the InducT-SGC delivers much

higher performance than the original SGC. The performance trend shows how our Inductive

framework perfectly fits the inductive learning nature.
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TABLE 5.4. Graph Construction Time and Training Time comparison on
R8A (sec). Hardware: 16 Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz and
NVIDIA Titan RTX 24GB

Test Size TextGCN InducT-GCN
Graph Training Graph Training

×1 6.29 2.75 0.89 0.52
×2 11.90 3.20 1.11 0.53
×3 16.60 3.54 1.30 0.53
×4 21.10 4.13 1.52 0.55
×5 27.50 4.98 1.68 0.51

TABLE 5.5. Test Accuracy on Full Data Setting

Method R8 Full R52 Full
TextGCN 0.9629 ± 0.0010 0.9295 ± 0.0020

InducT-GCN 0.9653 ± 0.0017 0.9323 ± 0.0015

5.5.3 Impact of Initial Word Embedding

As mentioned in Section 5.3.4, the first layer of InducT-GCN learns the word embeddings and

is randomly initialized. We also examine other initial embedding weights methods including

pre-trained Word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014). Table

5.3 shows the performance comparison of different pre-trained word embeddings. In most

cases except Ohsumed, pre-trained word embeddings can improve the performance of InducT-

GCN. However, Ohsumed is a medical-related dataset, and the out-of-vocabulary issue of the

pretrained embedding doesn’t help with the document classification task. Although we only

focus on the model without using any external resources in this study, this result still shows

the potentiality of InducT-GCN when used with external resources.

5.5.4 Computation Time Results

Table 5.4 compares the original transductive TextGCN with InducT-GCN on R8A and visu-

alises the superiority of our inductive learning framework by reducing the computation

time, including graph construction and training. The larger the test size is, the more time

InducT-GCN can save.
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5.5.5 Performance in Full Dataset

We also evaluated the performance of our InducT-GCN with the full dataset, like the TextGCN

was evaluated (Yao et al., 2019). As can be seen in Table 5.5, the performance of InducT-GCN

and TextGCN on R8 and R52 are comparable when using the entire dataset with the same

hyperparamters. We can conclude that InducT-GCN is superior to TextGCN in terms of

performance and computation, which is not only in smaller space with fewer parameter

numbers but also in the whole dataset setting.
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5.6 Conclusion

This study proposes a novel inductive graph-based text classification framework, InducT-GCN,

which makes heavy and transductive GCN-based text classification models inductive. We

construct a graph only using training set statistics. InducT-GCN can efficiently capture global

information with fewer parameters and smaller space complexity. Our InducT-GCN signific-

antly outperformed all graph-based text classification baselines and was even better than the

models using pretrained embeddings. We also demonstrated the generalisation capability of

our inductive graph construction and learning framework by applying and expanding different

transductive graph-based text classification models, like TextGCN and SGC. Compared to

the original models, the performance and computation time were surprisingly improved.

Hopefully, this work provides some insight into the future integration of lighter and faster

inductive graph neural networks on different NLP tasks.



CHAPTER 6

Re-Temp: Relation-Aware Temporal Representation Learning

Temporal Knowledge Graph Completion (TKGC) aims to predict the missing entity from

a query (Subject Entity, Relation, ?, Timestamp) or (?, Relation, Object Entity, Timestamp).

There are two main settings in TKGC; the interpolation setting aims to complete the facts

in history, while that under the extrapolation setting predicts facts at future timestamps. In

this chapter, we aim to focus on the TKGC in the extrapolation settings, which is challenging

and more aligned with the real-world prediction issue. Most existing research encodes the

entities and relations via applying a sequential graph neural network on the recent snapshots.

However, they tend to neglect the importance of explicit temporal information and do not

consider skipping the irrelevant snapshots according to the entity-related relation in the

query. Motivated by this, we proposed our model, Re-Temp(Relation-Aware Temporal

Representation Learning), which applies explicit temporal embedding as the input and a skip

information flow after each timestamp to remove unnecessary information for prediction. In

addition to this, to avoid information leakage, we propose a two-phase forward propagation

method. We evaluate our model on six TKGC(extrapolation) datasets and significantly

outperforms all recent eight state-of-the-art models.

99
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6.1 Introduction

A Knowledge Graph (KG) is a graph-structure database composed of facts represented by

triplets. A triplet is in the form of (Subject Entity, Relation, Object Entity) such as (Alice,

Is a Friend of, Bob). The entities serve as nodes while the relations serve as direct edges

connecting nodes in the graph. Knowledge Graph plays a vital role in many applications, e.g.

Recommendation System(Wang et al., 2019), Question Answering(Zhang et al., 2018b), and

Search Engine(Zhao et al., 2021).

However, facts are not static but continuously update over time. Temporal Knowledge Graphs

(TKG) are introduced by adding the extra temporal information of each fact. While the

traditional static KGs represent a fact as a triplet, TKGs expand each triple with a timestamp

as a quadruplet (Subject Entity, Relation, Object Entity, Timestamp). A Temporal Knowledge

Graph can be represented as a sequence of snapshots, and each snapshot represents the graph

for one timestamp and can be viewed as a static KG.

Temporal Knowledge Graph Completion (TKGC) aims to predict the missing entity from

a query (Subject Entity, Relation, ?, Timestamp) or (?, Relation, Object Entity, Timestamp).

A Subject Entity prediction problem can be converted to Object Entity prediction (Object

Entity, Relation−1, ?, Timestamp) by adding the inverse of each quadruplet into the dataset.

In TKGC, there are two main settings: interpolation and extrapolation setting. TKGC under

the interpolation setting completes the facts in history, while TKGC under the extrapolation

setting predicts facts at future timestamps. In this chapter, we aim to focus on the TKGC in

the extrapolation settings, which is more challenging and still has too much to improve(Jin et

al., 2020).

The traditional static KGC problems have been solved by various types of components and

models. Many researchers tried to adopt and extend those static KGC models to encode the

entities and relations. However, there is a critical challenge: how to extend a static KGC

model into a TKGC model by encoding the temporal information? Recent works(Jin et al.,

2020; Li et al., 2021b; Li et al., 2022a; Li et al., 2022b) have applied a sequential Graph

Neural Network (GNN) to the previous snapshots for encoding the entities and relations.
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FIGURE 6.1. A case study of temporal knowledge graph completion under
the extrapolation setting

Then, they use a static score function as the decoder to measure the score of each candidate.

The main reason for using a sequential GNN is to make predictions on the queries in the

future, the facts shown in the recent history can be helpful. An example is shown in Figure 6.1,

the previous facts (Kim Jong-Un, criticize, United States) three days before and (Kim Jong-Un,

Make Statement, Donald Trump) one day before may imply (Donald Trump, Threaten with

administrative sanction, Kim Jong-Un) today. Since no explicit timestamp value is used, we

can call this sequential information “implicit temporal information”.
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TABLE 6.1. Summary of TKGC(extrapolation) models and our proposed
model. ‘Temporal’ means how the temporal information is used, and ‘Query’
means how the model utilises query.

Method Core idea Temporal Query
RE-NET estimate the future graph distribution implicit x
CyGNet identify facts with repetition explicit repetitive queries
xERTE sample subgraph according to query implicit query-related subgraph
REGCN relation-GCN + GRU implicit x
TANGO neural ODE on continuous-time reasoning implicit x
TITER path-based reinforcement learning implicit query-related path
CEN ensemble model with different history

lengths
implicit x

HiSMatch two separated encoders for entity and
query information

implicit repetitive queries

Re-Temp skip irrelevant information according to
entity-related relations

both query-related skip in-
formation flow

However, it is not sufficient to effectively encode the timestamp. There are two more points

that must be considered. First of all, explicit temporal information is very crucial to handle

the timestamp: Given (Kim Jong-Un, criticize, United States) and (Kim Jong-Un, Make

Statement, Donald Trump) as historical facts, the score measuring the validity of (Donald

Trump, Threaten with administrative sanction, Kim Jong-Un) could be different in 2018 and

2022 based on the situation. Donald Trump was the president in 2018 but was not in 2022,

which makes him unable to threaten another nation with administrative sanctions in 2022.

The nature of entities may change over time. Hence, the model should consider the explicit

temporal information to encode the time-dependent factor. Secondly, recent historical facts

are not always crucial to the prediction. Assume that we are given the historical facts (Kim

Jong-Un, criticize, United States, 2018-08-01),(Donald Trump, Make a visit, Switzerland,

2018-08-02) and (Kim Jong-Un, Make Statement, Donald Trump, 2018-08-03). In order to

calculate the score of (Donald Trump, Threaten with administrative sanction, Kim Jong-Un,

2018-08-04), the second quadruplet visiting Switzerland (in 2018-08-02) does not particularly

contribute to the prediction of the relation between Donald Trump and Kim Jong-Un since

Switzerland is politically neutral. In this case, the model should find a way to skip the

irrelevant snapshots according to the entity-related relation in the query.
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According to the above points, we would like to claim that an optimal TKGC model should

consider (1) explicit temporal information and (2) implicit temporal information with skipping

irrelevant snapshots by considering the query. As shown in Table 6.1, all the previous TKGC

models under the extrapolation setting fail to consider both temporal information or effectively

utilise the query. They either only focus on learning to encode entities based on the previous

snapshots(Li et al., 2021b; Han et al., 2021; Li et al., 2022a), or only focus on the query-

related information(Jin et al., 2020; Zhu et al., 2021; Han et al., 2020), or build two separate

encoders for both types of information but simply combines the output(Li et al., 2022b).

Hence, we propose Re-Temp, a new relation-aware temporal representation learning model for

TKGC under the extrapolation settings. The encoder takes the explicit temporal embedding

of each entity as the input and then CompGCN(Vashishth et al., 2020) is applied to each

snapshot. Explicit temporal embedding is the combination of static embedding and dynamic

embedding. After each GNN, a skip information flow is applied by considering the entity-

related relation in the query. After encoding the entities and relations, ConvTransE is used

as the score function. Additionally, we propose a two-phase forward propagation method to

avoid information leakage and we also experiment with our model in an ensemble setting

with different history lengths. The main contributions of this chapter can be summarised as

follows:

• We propose Re-Temp, a new TKGC model, which considers both the explicit and

implicit temporal information. This would improve the capability of particularly

skipping the irrelevant snapshots.

• We compare our Re-Temp with eight state-of-the-art baseline models from recent

years on six publicly available TKGC datasets under the extrapolation setting. Our

Re-Tmp greatly outperforms all of the baselines.

• We propose a new two-phase forward propagation method in order to avoid informa-

tion leakage.

• We conduct a case study and statistical analysis to show the different natures of each

dataset.
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6.2 Related Work

Knowledge Graph Completion (KGC) models have been adopted an encoder-decoder frame-

work(Hamilton et al., 2017b), in which the encoder generates the embedding of entities and

relations and the score function plays as a decoder. This framework has been applied in both

static and temporal KGC.

6.2.1 Static KGC methods

The simplest encoder extracts the embedding directly from an embedding lookup table.

TransE(Bordes et al., 2013), DisMult(Yang et al., 2015), and Tucker(Balažević et al., 2019)

follow this representation generation method while applying different decoding methods, like

summation, element-wise product or outer product. The rise of Graph Neural Networks(GNN)

encourages the introduction of models, which focus on encoding the entity and relations using

GNN by considering the graph structure information: R-GCN(Schlichtkrull et al., 2018)

learns the node embedding by the subgraph of each relation type; KB-GAT(Nathani et al.,

2019) applies attention between node embedding and relation(edge) embedding to learn

both representations simultaneously; TransGCN(Cai et al., 2019) and CompGCN(Vashishth

et al., 2020) consider relations as a transformation of the entity. With those embedding

generation, score functions, like DistMult(Yang et al., 2015) and Conv-TransE(Shang et al.,

2019), are applied as the decoder. The graph encoders and static decoders inspired those in

later Temporal KGC methods, however, they cannot handle temporal information, which is

crucial to Temporal KGC tasks.

6.2.2 Temporal KGC methods

TKGC(Interpolation) The main difference between static KG and temporal KG is the im-

portance and usage of temporal information; temporal KG has a timestamp for each fact.

To integrate the temporal information in the decoder, TTransE(Jiang et al., 2016) extends

TransE(Bordes et al., 2013) with the summation of an extra timestamp embedding, and

ConT(Ma et al., 2019) extends Tucker(Balažević et al., 2019) by replacing the learnable
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weight with the timestamp embedding. Some methods focus on combining temporal informa-

tion in the encoder: TA-DistMult(Garcia-Duran et al., 2018) encodes the temporal information

into relation embedding by using LSTM, while DE-SimplE(Goel et al., 2020) encodes a

diachronic entity embedding with temporal information. They simply adopted those decoders,

DistMult(Yang et al., 2015) and SimplE(Kazemi and Poole, 2018) accordingly. Those models

produced relatively lower performance on TKGC under the extrapolation setting tasks since

they were stuck with a big challenge to capture unseen temporal information.

TKGC(extrapolation) For the last few years, more attention has been paid to TKGC tasks

under the extrapolation setting. GNNs are typically used as the encoder: RE-NET(Jin

et al., 2020) applies sequential neighbourhood aggregators such as R-GCN(Schlichtkrull

et al., 2018) to get the distribution of the target timestamp snapshot, REGCN(Li et al.,

2021b) adopts CompGCN(Vashishth et al., 2020) at each timestamp and GRU for sequential

information. CEN(Li et al., 2022a) uses an ensemble model of sequential GNNs with different

history lengths, TANGO(Han et al., 2021) solves Neural Ordinary Equations and makes it

as the input of a Multi-Relational GCN, and HiSMatch(Li et al., 2022b) builds two GNN

encoders modelling the sequential candidate graph and query-related subgraphs separately

and combines the representation from both sides into a matching function. Meanwhile,

some methods do not follow the traditional encoder and decoder framework. xERTE(Han

et al., 2020) extracts subgraph according to queries, CyGNet(Zhu et al., 2021) identifies the

candidates with repetition, and TITer(Haohai Sun, 2021) uses reinforcement learning methods

to search for the temporal evidence chain for prediction. In conclusion, RE-NET, REGCN,

and CEN adopt the entity evolvement information, while xERTE, CyGNet and TITer focus

on the query. HiSMatch combines these two types of information with two separate encoders.

However, none of the previous works encoded both sequential and query-related information

in one precise encoder, which is crucial to skip/handle irrelevant snapshots. In addition to this,

none of the previous methods considers explicit temporal information, except for CyGNet.

CyGNet generates an independent timestamp vector but does not encode it into the entity or

relation. Table 6.1 presents the summary of TKGC(extrapolation) models and emphasises the

contribution of our proposed model.
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6.3 Re-Temp

FIGURE 6.2. Illustration of Encoding and Decoding process in Re-Temp with
history length as 3. For a query q, the input vector is heq

tq−3. The encoder with
relation-aware skip information flow learns the entity and relation representa-
tion h

eq
tq and hrq . Then the decoder measures the score of all the candidates.

We introduce the model, Re-Temp (Relation-Aware Temporal Representation Learning), for

Temporal Knowledge Graph Completion. The overall architecture of our model can be found

in Figure 6.2. Section 6.3.1 describes the notations of a TKGC task. The input of the model is

the explicit temporal embedding represented by a combination of static and dynamic entity

embedding (Section 6.3.2). For the encoder, a sequential graph neural network(GNN) is

applied, and at each timestamp, a multi-relational graph neural network CompGCN(Vashishth

et al., 2020) is adopted (Sections 6.3.3.1). After each timestamp, we adopt a relation-aware

skip information flow mechanism (Section 6.3.3.2) to retain the necessary information for

prediction. The ConvTransE decoder is introduced in Section 6.3.4. To avoid information

leaking, we apply a two-phase forward propagation method (Section 6.3.5). Finally, inspired

by previous work(Li et al., 2022a), we introduce an ensemble model of our proposed model

(Section 6.3.6).
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6.3.1 Problem Formulation

To denote the set of entities, relations, timestamps and facts, E ,R, T and F are selec-

ted. A temporal knowledge graph G can be treated as |T | sequential snapshots, G =

{G0, G1, ..., GT}, where Gt = {E ,R,Ft} is a directed multi-relational graph at timestamp t.

For each fact, a quadruplet is represented as (es, r, eo, t), where es, eo ∈ E are the subject and

object entities, r ∈ R represents the relation and t ∈ T is the timestamp. The target of the

temporal knowledge graph completion under the extrapolation setting is that for a query q,

predicting (es, r, ?, tq) or (?, r, eo, tq) given previous snapshots {G0, G1, ..., Gtq−1}. To sim-

plify the problem, we add the inverse of each quadruplet into the dataset, making all subject

entity prediction problem (?, r, eo, tq) into object entity prediction problem (eo, r
−1, ?, tq).

6.3.2 Explicit Temporal Representation

Our proposed model, Re-Temp, considers two types of temporal information to solve a TKGC

task: explicit temporal information and implicit temporal information. The explicit temporal

information would be represented as a function of timestamp t, while the implicit temporal

information would be derived by a sequential GNN model.

We first introduce our new explicit temporal representation. To make predictions on the

queries on timestamp tq, k recent snapshots are taken into consideration and k is the history

length. For sequential snapshots with length k, let heq
tq−k ∈ R1×d denotes the input embedding

of the subject entity eq from query q, and d is the dimension of the input. In order to encode

the explicit temporal information, we concatenated two kinds of input embedding; static and

dynamic embedding. The static embedding reveals the nature of an entity that does not change

through time, while the dynamic part reveals the time-dependent information. Inspired by

ATiSE(Xu et al., 2020a), the dynamic embedding is decomposed into the trend component and

seasonal component, and the trend component can be represented as a linear transformation

on t while the seasonal component should be a periodical function of t. Thus, we model the

dynamic temporal embedding at timestamp t by the summation of trend embedding weq ,0t

and seasonal embedding sin(2πweq ,1t). After concatenation with the static embedding, a
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feed-forward layer is applied. Formally, the input of the encoder heq
tq−k is derived by:

h
eq ,S
tq−k = heq ,S (6.1)

h
eq ,D
tq−k = αweq ,0(tq − k) + (1− α)sin(2πweq ,1(tq − k)) (6.2)

h
eq
tq−k = Wtmp(h

eq ,S
tq−k ⊕ h

eq ,D
tq−k) (6.3)

where h
eq ,S
tq−k in Equation 6.1 and h

eq ,D
tq−k in Equation 6.2 denote the static and dynamic embed-

ding for subject entity eq at timestamp tq − k, ⊕ denotes the concatenation, and heq ,s, weq ,0,

weq ,1, Wtmp are learnable parameters. α measures the trade-off between trend and seasonal

embedding and is a hyperparameter determined before training.

6.3.3 Sequential GNN-based Encoder

In order to handle implicit temporal information, we introduce a sequential GNN-based

encoder with a new relation-aware skip information flow mechanism.

6.3.3.1 At Each Timestamp: CompGCN

Following recent models(Li et al., 2021b; Li et al., 2022a; Li et al., 2022b), we adopt a

variant of CompGCN(Vashishth et al., 2020) at each timestamp to model the multi-relational

snapshot, learning both the entity embedding he and the relation embedding hr. At each layer,

edges(relations) are conducted as the transformation on the connected node(entity), and then

a weighted sum calculation from GCN(Kipf and Welling, 2017) is applied to the transformed

entity. Self-loop is also calculated before the activation function. Formally, for a entity node

eq at timestamp ti at lth layer, the propagation shows as follows:

h
eq ,l+1
ti = σ(

1

|N eq
ti |

∑
en∈N

eq
ti

W l
g,0f(h

en,l
ti , hr) +W l

g,1h
eq ,l
ti ) (6.4)

where N eq
ti is the set of the neighbour entities of eq at timestamp ti, σ is the activation function

and RReLU(Xu et al., 2015) is chosen. W l
g,0 and W l

g,1 are learnable parameters at layer l, and

f is the composition function for neighbour entity embedding hen,l
ti and relation embedding

hr, such as summation, subtraction, element-wise product, or circular-correlation(Xu et al.,
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2015).Summation is selected for better alignment of relation-aware skip information flow

shown in Section 6.3.3.2.

6.3.3.2 Between Timestamps: Relation-Aware Skip Information Flow Mechanism

As aforementioned in the introduction, not all snapshots in the recent history are useful in

predicting query q.

To solve this issue, we propose and adopt a new relation-aware skip information flow. There

are two main points: (1) Skip connection is used for filtering out the unnecessary information

from each timestamp. (2) Relation-aware attention mechanism focuses on determining

whether the information should be dropped/neglected. Thus, after getting the output of

CompGCN, the output will be weighted-summed up with previous timestamps input to

particularly skip the irrelevant snapshots. The weights of the weighted sum are calculated by

considering both the entity and the entity-related relation in the query.

Formally, for an entity eq, the relation associated with eq should be considered. To capture

the entity-related relation information, mean pooling is applied on all relation embedding

associated with eq at timestamp tq. The additive attention is applied between all m previous

timestamps inputs and the average relation embedding. Let the output of CompGCN at

timestamp ti be h
eq ,L
ti . After getting the attention weights β

eq
j , the weighted sum using

these attention weights is applied on the current CompGCN output heq ,L
ti and all m previous

timestamp inputs. The detailed calculation shows as follows:

h
eq
r,tq =

1

|Req
tq |

∑
r∈Req

tq

hr (6.5)

attn
eq
j =

0 j = 0

Wa(h
eq
ti−j + h

eq
r,tq) j ∈ [1,m]

(6.6)

β
eq
j = softmax(attn

eq
j ), j ∈ [0,m] (6.7)

h
eq
ti+1 = β

eq
0 h

eq ,L
ti +

m∑
j=1

β
eq
j h

eq
ti−j (6.8)
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Note that the output of each timestamp is also the input of the next timestamp. Equation

6.5 shows the entity-associated relation embedding and R
eq
tq denotes the relation set which

connects with entity eq at timestamp tq. Equation 6.6 and 6.7 denote the attention score and

weight calculation where Wa is learnable. By applying the relation-aware skip information

flow, our model is capable of skipping irrelevant snapshots by considering the target query

relations.

6.3.4 Decoder

ConvTransE(Shang et al., 2019) has been considered as a strong score function, so it is

adopted by the recent models in both static KGC task(Malaviya et al., 2020) and temporal

KGC task(Li et al., 2022b). Following this, we also adopted ConvTransE. To do this, the

query subject entity embedding h
eq
tq and query relation embedding hrq are concatenated first,

and then a convolutional layer and a feed-forward layer are applied. The score of each

candidate is the dot-product of the candidate entity embedding with the representation after

the ConvTransE. To denote the process of calculating the score of the candidate entity ec:

s(eq, rq, ec, tq) = hec
tq FC(Conv1d([heq

tq ⊕ hrq ])) (6.9)

where ec is the candidate entity.

After getting the score of each candidate, we train the model as a classification problem and

the loss function for each query shows as follows:

L = −
∑
ec∈E

zclog(s(eq, rq, ec, tq)) (6.10)

and zc will be 1 if correctly classified, otherwise it is 0. The training target is to minimise the

total loss for all queries.

6.3.5 Two-Phase Propagation

Even though the proposed relation-aware skip information flow shows great performance,

there would be a potential information leakage problem. Suppose a query in the test set is
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(A, r,B, t), after adding the inverse of quadruple, (B, r−1, A, t) also shows in the test set.

When applying the encoder, with the relation-aware skip information flow, A and B will

contain the information of r and r−1 accordingly. Therefore, when making predictions on

(A, r, ?, t) and calculating the score by dot product A and all candidates, there is a chance that

the information of r in A can meet the information of r−1 in B. Since r and r−1 are paired,

the model might find a shortcut to determine B is the right answer for (A, r, ?, t).

To avoid such potential information leakage, we adopt a two-phase forward propagation

method. After generating the inverse quadruplets, two sets are available: the original set

and the inverse set. During each epoch, the snapshots in the history are built using the

combination of the original set and the inverse set. Since the queries are considered in the

forward propagation(Section 6.3.3.2), the forward propagation is made on the queries in

the original set first then the inverse set. After two times forward propagation, the loss and

prediction scores will be gathered for training or testing.

6.3.6 Ensemble Modelling

CEN(Li et al., 2022a) builds an ensemble model with different history lengths. Inspired by

this, we test our model under an ensemble setting. For a model with a history length of k,

suppose the score vector of all candidates for query q is sqk, a pooling method is applied on

{sq1, s
q
2, ..., s

q
k} to get the final score. Three different pooling methods are applied and results

are discussed in Section 6.5.4. Note that only the experiments in Section 6.5.4 are under the

ensemble setting while the rest of the experiments are conducted with our original model.
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6.4 Experiment Setup

TABLE 6.2. Statistics Details of Each Dataset

ICEWS14 ICEWS18 ICEWS05-15
# Entities 7,128 23,033 10,094
# Relations 230 256 251
# Facts in Training set 74,845 373,018 368,868
# Facts in Validation set 8,514 45,995 46,302
# Facts in Test set 7,371 49,545 46,159
# Facts in Total 89,730 468,558 461,329
# Snapshots in Training set 304 240 3,243
# Snapshots in Validation set 30 30 404
# Snapshots in Test set 31 34 370
# Total Snapshots 365 304 4,017
# Facts(avg.) per Snapshot 245.8 1541.3 32.2
Time Interval 1 day 1 day 1 day
Total Time Range 1 year 0.83 years 11 years

ICEWS14* GDELT WIKI
# Entities 7,128 7,691 12,554
# Relations 230 240 24
# Facts in Training set 63,685 1,734,399 539,286
# Facts in Validation set 13,823 238,765 67,538
# Facts in Test set 13,222 305,241 63,110
# Facts in Total 90,730 2,277,405 669,934
# Snapshots in Training set 262 2,304 211
# Snapshots in Validation set 52 288 11
# Snapshots in Test set 51 384 10
# Total Snapshots 365 2,976 232
# Facts(avg.) per Snapshot 248.6 765.3 2887.6
Time Interval 1 day 15 mins 1 year
Total Time Range 1 year 0.54 years 232 years

6.4.1 Dataset

We evaluated our model on six widely-used TKG datasets with different statistics: ICEWS14(Li

et al., 2021b), ICEWS18(Jin et al., 2020), ICEWS05-15(Han et al., 2020), ICEWS14*(Han

et al., 2020), GDELT(Jin et al., 2020), and WIKI(Leblay and Chekol, 2018). The overall

statistics of each dataset are presented in Table 6.2. All datasets are split into the Training,

Validation and Test sets in chronological order. For example, the timestamps in ICEWS14



6.4 EXPERIMENT SETUP 113

are from 1st to 304th, from 305th to 334th and from 335th to 365th for training, validation

and test set accordingly.

• ICEWS14, ICEWS18, ICEWS05-15, ICEWS14* are extracted from Integrated

Crisis Early Warning System which is a database system recording political events.

14, 18, 05-15 represent the year of the dataset(2014, 2018, 2005-2015), and ICEWS14*

uses a different split compared with ICEWS14. The time interval of ICEWS is 1 day.

A sample from ICEWS datasets is (John_Kerry, Host_a_visit, Benjamin_Netanyahu,

2014-01-01)

• GDELT is also a political event temporal knowledge graph dataset from the Global

Database of Events, Language, and Tone(Leetaru and Schrodt, ). Compared with

ICEWS datasets, its time interval is only 15 minutes and GDELT is collected from

a wider variety of sources. (Minist, Return, Nigeria, 0) is a sample in GDELT.

• WIKI is from Wikidata, an open knowledge base and not limited to political events.

The temporal representation in the facts from Wikidata is not a single date/year but a

range. For example, the fact (Wang Shu, educated at, Southeast University) is valid

from 1981 to 1988. To represent a such range, WIKI generates eight quadruplets

across eight snapshots during 1981-1988. More cases of WIKI will be explored in

Section 6.5.

6.4.2 Baselines

This work mainly focuses on the TKGC under the extrapolation setting, and our Re-Temp

is compared with TKGC models under the extrapolation setting, which requires more un-

derstanding of unseen temporal knowledge. Those models that are designed for static KG

completion or TKGC under the interpolation setting tasks are not compared since they do not

fully deal with unseen temporal knowledge, which is crucial in TKGC under the extrapol-

ation setting tasks. Eight models from recent years are selected as baselines: RE-NET(Jin

et al., 2020), RE-GCN(Li et al., 2021b), CyGNet(Zhu et al., 2021), xERTE(Han et al.,

2020), TITer(Haohai Sun, 2021), TANGO(Han et al., 2021), CEN(Li et al., 2022a), and

HiSMatch(Li et al., 2022b).
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6.4.3 Running Details

All the experiments are conducted under a non-ensemble setting; otherwise, it is specified in

Section 6.5.4. For the snapshots sequence, we use a history length of 3 for ICES14, ICEWS18,

ICEWS05-15, ICEWS14* and GDELT, while 1 for WIKI. The influence of history length

is discussed in Section 6.5.2. The rest of the hyperparameters are the same for all datasets.

The trade-off factor between the trend component and the seasonal component in the explicit

temporal embedding α is set to 0.5. Following the previous works(Li et al., 2022a; Li et al.,

2022b), the dimension of the input is set to 200, which is also the hidden dimension of the

graph model and decoder hidden dimension. The number of graph neural network layers

is 2 and the dropout rate is set to 0.2. Adam(Kingma and Ba, 2015) with a learning rate

of 1e-3 is used for optimisation. The model is trained on the training set with a maximum

of 30 epochs and we stop training when the validation performance doesn’t improve in 5

consecutive epochs. Then, the test set is evaluated using the trained model. All the models

are trained by using 16 Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz and NVIDIA Titan

RTX 24GB using Pytorch.

6.4.4 Evaluation Metrics

Following the previous works(Han et al., 2020; Zhu et al., 2021; Li et al., 2022b), we employ

widely used evaluation metrics, including Mean Reciprocal Rank(MRR), hits@1, hits@3,

and hits@10, and report the five-times running average result. For each query, the model

produces a ranked list of all possible candidates and the reciprocal rank is the inverse of the

rank position of the correct answer. MRR is calculated by 1
Q

∑Q
q=1

1
rankq

, which is the average

reciprocal rank of all queries. Hits@N measures the proportion of results, where the correct

answer is in the top N ranked results. N = 1, 3, 10 are chosen, as all previous works adopted.

The higher value of MRR and hits@N indicates the better performance of a model. We adopt

the way of filtering out the quadruplets occurring at the query time, followed by Haohai Sun

(2021) and Han et al. (2021).
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6.5 Experiments Results

In this section, we conduct experiments to evaluate the performance of our model on the

different types of datasets. In particular, we aim to answer the following questions:

• Q1 [Section 6.5.1]: How does our model perform as compared to the state-of-art

techniques?

• Q2 [Section 6.5.2]: Since the query is predicted based on sequential snapshots, how

does the sequential snapshots length (history length) influence the model perform-

ance?

• Q3 [Section 6.5.3]: How does each component of our model contribute to the

performance?

• Q4 [Section 6.5.4]: How does the model perform under the ensemble setting with

different history lengths?

• Q5 [Section 6.5.5]: How will the model perform when different graph models or

decoders are used?

6.5.1 Performance Comparison

Table 6.3 presents the performance comparison of all baseline models. Our model, Re-

Temp, outperforms almost all the baseline models on ICEWS14, ICEWS18, ICEWS05-15,

ICEWS14*, GDELT and WIKI, indicating the superiority of our Re-Temp model. In detail,

three points can be observed:

First of all, our Re-Temp achieved the highest, and HiSMatch(Li et al., 2022b) follows by

achieving the second-highest performance on most of the datasets. Note that HiSMatch

applied the concept of both the query subgraph and entity subgraph, which is similar to

the relation-aware attention mechanism in our skip information flow. However, a huge

performance gap between HisMatch and our model is produced. This is mainly because

HiSMatch only builds the query subgraph using the exact same relation of the query, so it

ignores the potential similarity between relations. For example, in ICEWS14, assume we
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TABLE 6.3. Performance(%) comparison with baseline models. The highest
value is bold and the second highest is underlined.

Model ICEWS14 ICEWS18
MRR hits@1 hits@3 hits@10 MRR hits@1 hits@3 hits@10

RE-NET 37.01 27.02 39.66 54.85 29.02 20.03 33.14 48.60
CyGNet 35.02 25.72 39.06 53.50 25.03 16.03 29.28 43.42
xERTE 40.12 32.11 44.73 56.25 29.31 21.03 33.51 46.48
REGCN 41.50 30.86 46.60 62.47 30.55 20.00 34.73 51.46
TANGO 30.12 23.03 35.48 52.32 28.97 19.51 32.61 47.51
TITer 41.73 32.74 46.46 58.44 29.96 22.06 33.41 44.92
CEN 42.20 32.08 47.46 61.31 31.50 21.70 35.44 50.59
HiSMatch 46.42 35.91 51.63 66.84 33.99 23.91 37.90 53.94
Re-Temp (Ours) 48.04 37.32 53.60 68.90 35.82 25.02 40.36 57.30

Model ICEWS05-15 ICEWS14*
MRR hits@1 hits@3 hits@10 MRR hits@1 hits@3 hits@10

RE-NET 44.03 34.43 49.03 64.03 38.28 28.68 41.43 54.52
CyGNet 37.03 27.01 42.23 56.98 33.13 24.16 37.02 51.23
xERTE 46.62 37.84 52.31 63.92 40.77 32.65 45.71 57.29
REGCN 46.41 35.17 52.76 67.64 41.79 31.55 46.67 61.53
TANGO 42.86 32.72 48.14 62.34 26.35 17.33 29.27 44.32
TITer 47.78 38.05 53.11 65.93 41.76 32.69 46.35 58.46
CEN 45.97 35.56 51.45 66.14 40.78 31.26 45.26 59.16
HiSMatch 52.85 42.01 59.05 73.28 45.82 35.84 50.79 65.08
Re-Temp 56.30 45.49 62.80 77.17 46.40 35.83 51.69 67.12

Model GDELT WIKI
MRR hits@1 hits@3 hits@10 MRR hits@1 hits@3 hits@10

RE-NET 19.63 12.39 21.03 34.02 49.66 46.98 51.23 53.49
CyGNet 18.98 12.32 20.56 33.89 43.78 39.02 46.12 51.92
xERTE 18.07 12.31 20.05 30.32 71.16 68.03 76.15 78.99
REGCN 19.31 11.99 20.61 33.59 77.58 73.72 80.39 83.69
TANGO 18.03 12.36 19.96 29.31 51.15 49.65 52.26 53.44
TITer 17.02 11.23 19.81 26.92 75.51 72.98 77.51 79.32
CEN 19.89 12.61 21.16 34.09 77.65 73.86 80.69 84.00
HiSMatch 22.01 14.45 23.80 36.61 78.07 73.89 81.32 84.65
Re-Temp 25.05 15.70 27.14 44.16 78.51 74.80 81.33 84.50

make a prediction on (A, provide_aid, ?, tq), relation ‘provide_aid’ and ‘provide_military_aid’

share similarities. HisMatch only considers the entity with ‘provide_aid’ in the recent history,

while our Re-Temp uses the embedding of relation to calculate the attention weights, and

makes it general for different types of relations that are close in the embedding space. This
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TABLE 6.4. Cases from WIKI Dataset about Lionel Messi from Year 2003 to
Year 2005.

Subject Entity Relation Object Entity Year
Lionel Messi residence Barcelona 2003
Lionel Messi member of sports team FC Barcelona C 2003
Lionel Messi residence Barcelona 2004
Lionel Messi member of sports team FC Barcelona C 2004
Lionel Messi member of sports team FC Barcelona Atlètic 2004
Lionel Messi residence Barcelona 2005
Lionel Messi member of sports team Argentina national football team 2005

led to outperforming HiSMatch. In addition to this, HiSMatch builds two separate encoders

and fuses the output for the decoder while our model only applies one encoder for better

information alignment.

Secondly, among four ICEWS datasets, our Re-Temp achieves much more improvement on

ICEWS05-15. As shown in Table 6.2, the snapshots in ICEWS05-15 are sparser than those

in ICEWS14, ICEWS18, and ICEWS14*. This presents the ability of our model to learn

sequential information with fewer data.

Thirdly, among six datasets, our model achieves a comparable performance with the second-

best model on WIKI. The cause can be found in the nature of this dataset. For example,

table 6.4 shows some cases of facts about Lionel Messi in WIKI. Suppose we are given the

following quadruplets from 2003 and 2004, it is relatively easy to predict (Lionel Messi,

residence, ?, 2005) based on his previous residence. However, without any external knowledge

base, it is impossible to have a correct prediction about (Lionel Messi, member of sports

team, ? , 2005) since the previous snapshots do not provide enough information on Argentina

national football team. This represents the main key challenge of the nature of the WIKI

dataset: the predictions are either too easy (with the previous facts), or too difficult (even

humans can not make a correct prediction without any external knowledge). Hence, the better

temporal information-dealing component cannot produce an undoubtedly better performance

on WIKI. So, our model and those baseline models (CEN, HiSMatch) share similar results on

this dataset.
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FIGURE 6.3. MRR(%) of Re-Temp with the history lengths from one to five.
The x-axis is the history length and the y-axis is the MRR(%).

6.5.2 Impact of history length

To analyse the impact of history length, we conducted experiments of history length variants

on all six different benchmark datasets. As shown in Figure 6.3, we reported the MRR results

of Our Re-Temp variants on different history lengths from one to five. Two key points can be

noticed.

First of all, on most of the datasets (ICEWS14, ICEWS18, ICEWS05-15, ICEWS14*, and

GDELT), we found that the larger the history length, the higher the MRR result. When the

history length is smaller, increasing the history length can improve the performance largely,
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FIGURE 6.4. Proportion(%) of quadruplets shown in exact one timestamp
before for each dataset. The x-axis is the name of the dataset and the y-axis is
the proportion(%).

and when the history length is larger than three, the improvement gets marginal. This aligns

with the expectations that the recent several snapshots can help with inference, while in

a longer history length, the irrelevant information does not contribute to the performance.

By considering the model performance and calculation complexity, we selected three (3)

as the history length for the final model of the following datasets, ICEWS14, ICEWS18,

ICEWS05-15, ICEWS14*, and GDELT.

Secondly, not surprisingly, WIKI produces the opposite trend, compared to other models.

The model on WIKI achieves the best performance when the history length is one(1). To

investigate the trend, a detailed statistical analysis of the dataset is conducted. Table 6.4 in

Section 6.5.1 shows some sample queries in WIKI, where some facts are the same as the facts

at previous timestamps. The reason lies in that for a fact (s,r,o,t1 - tn), WIKI generates the

same quadruplets across the time range from t1 to tn. Figure 6.4 shows the proportion of

the quadruplets at tq shown in the previous timestamp tq − 1 for all timestamps in the test

set on each dataset. 85.68% samples in the WIKI show in the one timestamp before, while
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TABLE 6.5. The MRR(%) result of the ablation test of Re-Temp. The highest
value is bold.

Model ICEWS14 ICEWS18 ICEWS05-15 ICEWS14* GDELT WIKI
Re-Temp 48.04 35.82 56.30 46.40 25.05 78.51
- dynamic 47.52 35.33 55.12 45.89 24.85 76.04
- relation_aware 39.93 30.56 44.95 38.75 19.92 78.14
- skip 36.56 28.07 43.80 36.30 18.61 79.60

fewer than 15% samples in ICEWS14, ICEWS18, ICEWS05-15, ICEWS14*, and GDELT

are from the previous timestamp. The same quadruplets shown across different timestamps

in WIKI result in similar snapshots at different timestamps. When a large history length is

applied, multiple graph neural network models applied on multiple similar graphs will be

approximated to applying a multiple layers GNN model on one graph. This leads to the

oversmoothing issue in a deep graph neural network(Li et al., 2018a). Therefore, a large

history length may decrease model performance on WIKI.

6.5.3 Ablation Study

We conducted ablation studies to show the effects of different components of our model.

Table 6.5 presents the ablation study of different components of our model.

Impact of explicit temporal embedding To evaluate the efficiency of the temporal repres-

entation, we remove the dynamic embedding from the explicit temporal input, resulting in

only the static embedding of each entity left. For all six benchmark datasets, the removal of

dynamic embedding leads to lower performance. The MRR performance drop in WIKI and

ICEWS05-15 is much larger than that in ICEWS14, ICEWS18, ICEWS14* and GDELT. This

is mainly because the total time range in these two datasets, WIKI and ICEWS05-15, is larger

(232 years and 11 years), and the entity information can evolve over a long period, which can

be captured by explicit temporal embedding.

Impact of relation-aware skip information flow To demonstrate how the relation-aware

skip information flow contributes to the model performance, two ablation tests are conducted.

Note ‘-relation_aware’ means that when calculating the attention score in skip information
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TABLE 6.6. MRR(%) of our model with different ensemble methods. The
highest value is bold.

Ensemble Model ICEWS14 ICEWS18 ICEWS05-15 ICEWS14* GDELT
Re-Temp 48.04 35.82 56.30 46.40 25.05
ensemble (avg pooling) 48.58 36.16 56.72 46.56 25.04
ensemble (max pooling) 48.69 36.38 56.69 47.06 25.06
ensemble (min pooling) 47.55 35.72 55.58 46.23 25.03

flow, the entity-related relation is omitted, formally, the attention score is Equation 6.6 is

changed to:

attn
eq
j =

Wa(h
eq
ti−j) j ∈ [1,m]

0 j = 0
(6.11)

Besides, we evaluate the model by removing the whole skip information flow, which means

the input of each timestamp would be the output of the last timestamp, heq
ti+1 = h

eq ,L
ti and we

use ‘-skip’ to note this experiment setting.

It can be inferred from Table 6.5. The model performance drops heavily if no relation-aware

attention mechanism is applied. It proves the vital importance of the relation-aware attention

mechanism. Considering that the relation-aware attention mechanism is applied for skipping

the irrelevant information according to the entities and their related relations in the queries,

we can conclude that the entity-related relation information actually helps the model to select

necessary information.

In most cases, removing the skip connection worsens the model performance compared with

only removing the relation-aware attention mechanism. Compare with the ‘-relation_aware’

setting, the models under the ‘-skip’ setting learn from all the recent snapshots for prediction,

leading to irrelevant information during prediction. However, WIKI shows better performance

under this setting, even compared with our original Re-Temp model. The reason might be

the same as that discussed in Section 6.5.2: More than 80% of facts in the WIKI show in the

previous timestamp, and a graph model applied on the previous timestamp can easily capture

that repetitive information for prediction.



122 6 RE-TEMP: RELATION-AWARE TEMPORAL REPRESENTATION LEARNING

TABLE 6.7. MRR(%) result of the Encoder and Decoder Variants test. The
highest value is bold.

Model Variants ICEWS14 ICEWS18 ICEWS05-15
Default - CompGCN(sum), ConvTransE 48.04 35.82 56.30
Encoder - CompGCN (Element-Wise) 47.57 35.24 55.81
Encoder - CompGCN (Circle-Correlation) 46.69 35.09 56.00
Decoder - Tucker 46.36 35.14 56.84
Decoder - DistMult 34.48 22.85 39.8

Model Variants ICEWS14* GDELT WIKI
Default - CompGCN(sum), ConvTransE 46.40 25.05 78.51
Encoder - CompGCN (Element-Wise) 45.54 24.98 70.99
Encoder - CompGCN (Circle-Correlation) 44.65 24.90 74.32
Decoder - Tucker 44.48 24.65 78.28
Decoder - DistMult 36.58 18.18 59.35

6.5.4 Ensemble Model Evaluation

Inspired by CEN(Li et al., 2022a) that applies average pooling for ensemble models, we

also conduct the ensemble model evaluation, by evaluating our model with three different

pooling methods, average pooling, max pooling and min pooling. Table 6.6 shows the

MRR(%) results of our model under the ensemble setting. We applied the history lengths

from one (1), and the maximum history length is set to three (3) as previously defined. We

did not include the experiments on WIKI since the optimal history length is one (1), and

no models with smaller history lengths can be used. First of all, our model can benefit

under the ensemble setting on four of the datasets (ICEWS14, ICEWS18, ICEWS05-15,

ICEWS14*), but only achieve similar performance on GDELT compared with the original

Re-Temp model (25.05%). Considering the history length influence shown in Figure 6.3, the

model achieves similar results with different history lengths. Therefore, models with different

history lengths on GDELT might be similar making the ensemble models less effective.

However, ICEWS datasets are history-length sensitive, and ensemble models can benefit from

different models of different history lengths. In addition to this, max pooling usually achieves

the best performance as the ensemble method while min pooling will worsen the performance.
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6.5.5 Model Varirants Experiments

We adopted CompGCN as a graph model in the encoder to model the multi-relational

snapshot, and the transformation function is the sum: f(hen,l
ti , hr) = hen,l

ti + hr. Followed

by Vashishth et al. (2020), we tested the default setting with the element-wise product or

circle-correlation as the transformation function, as shown in Table 6.7. Even though good

performance can be achieved by replacing the summation with other transformation functions,

the summation is the best transformation function. The reason would be that during the

skip information flow, additive attention is applied, which can benefit from the alignment

of the entity embedding and relation embedding. Moreover, various decoders aside from

ConvTransE are also experimented followed by TANGO(Han et al., 2021). As a decoder,

Tucker(Balažević et al., 2019) achieves much better performance than DistMult(Yang et al.,

2015). This is because DistMult lacks learnable parameters, while the learnable parameters in

ConvTransE and Tucker give the model more complexity to have more possibility to find an

optimal solution.
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6.6 Conclusion

We introduced Re-Temp, which integrates both explicit and implicit temporal information.

Moreover, we proposed a relation-aware skip information flow to adopt after each timestamp

to remove unnecessary information for prediction by taking the entity-related relation in

the query into consideration. The experimental results on six TKGC datasets present the

superiority of our model, compared with eight baseline models. We also conduct a statistical

analysis of the datasets to show the different nature between WIKI and other datasets. We

hope that our research presents insight into the importance of explicit temporal information

and skip information flow mechanisms for TKGC.



CHAPTER 7

Conclusion and Future Outlook

7.1 Conclusion

In this thesis, we explore how graph neural networks can be applied to natural language

processing in the way of text classification and knowledge graph completion. The details are

as follows:

• We categorize GNN in text classification into two types: corpus-level GNN and

document-level GNN, and performs a comparison between these methods. Addition-

ally, the utilization of knowledge graph completion models in the encoder-decoder

framework for both static and temporal knowledge graphs is analyzed.

• The analysis of TextGCN and its variants demonstrates the impact of graph construc-

tion and learning mechanism on the model performance.

• A novel method for transductive semi-supervised text classification is proposed:

ME-GCN. This multi-dimensional edge-embedded GCN leverages the entire dataset

through document-trained input embeddings and captures more complex information

through the use of multi-dimensional edges.

• InducT-GCN, a novel inductive GNN framework for text classification is proposed.

The experimental results demonstrate its excellent performance under limited la-

belled data settings, even with reduced time and space complexity.

• For temporal knowledge graph completion under the extrapolation settings, we

propose Re-Temp, which considers both explicit and implicit temporal information

and adopts a relation-aware skip information flow to skip irrelevant snapshots.

Experimental results show the great superiority of our model on TKGC datasets.
125
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7.2 Future outlook

7.2.1 Future Work on Proposed Method

Some future work can be explored on the methods proposed in this thesis:

• ME-GCN Though setting a small number on the edge dimension, the space com-

plexity will enlarge when the dataset size is large, which is also a typical problem in

corpus-level GNN text classification models. More works can be explored on more

efficient corpus-level GNN with lower space complexity.

• InducT-GCN More advanced ways of combing InducT-GCN and pretrained models

like BERT in an inductive learning way can be explored. In addition, there is

potential to explore more sophisticated GCN-based models that can be integrated

into this framework to enhance its performance.

• Re-Temp Since the explicit temporal embedding and the skip information flow show

great importance, a more advanced graph model and score function can be explored.

For example, combining the entity-related relation into the graph model to selectively

propagate between nodes, or combining the explicit temporal embedding into the

decoder score function.

7.2.2 Future Works on GNN for Text Classification and Knowledge

Graph Completion

It is suggested that future research efforts in applying GNN to text classification should focus

on corpus-level GNN models. This is because, with the vast amount of research dedicated

to single document information through pretrained models such as BERT, there is limited

potential for document-level graph models to outperform these models. On the other hand,

corpus-level GNN text classification models leverage the structural information of the entire

dataset and demonstrate remarkable performance when the amount of labelled data is limited.

Therefore, it is anticipated that more work can be done in corpus-level GNN models. Here

are some potential areas in that corpus-level GNN can work:
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• With the advent of large pretrained models like BERT, the extracted embeddings on

pretrained model has shown great performance on NLP tasks. However, corpus-level

GNN focuses on capturing the global structure information, which can be an add-on

to pretrained model embeddings. More work can be done on exploring what kind

of information that the corpus-level GNN learns and how it differs from pretrained

models like BERT.

• Language models, like GPT-3(Brown et al., 2020) achieve good results in few-shot

learning with proper prompt demonstration. Since corpus-level GNN also achieves

good results on limited labelled data, it is hoped that corpus-level GNN can help in

choosing the appropriate prompt demos for prompt learning.

• The interpretability of corpus-level GNN can be explored, and the contribution of

each word, or how each word represents the label information can be analyzed.

There remains a significant amount of work to be done in the area of knowledge graph

completion.

• While the current graph model in the state-of-the-art encoder is a straightforward

extension of GCN, there is room for further exploration of this model. Dealing with

multi-dimension or multi-relational edges is still a field needed to be conquered.

• The state-of-art score function so far applies a simple convolutional neural network

to calculate the score of the entity and relations. More types of neural network

architectures can be tested.

• Since knowledge graph completion tasks involve some kind of reasoning, the in-

terpretability of a knowledge graph completion model can be explored, which may

show the reasoning process of their prediction results.
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APPENDIX A

Detect All Abuse! Toward Universal Abusive Language Detection Models

Online abusive language detection (ALD) has become a societal issue of increasing importance

in recent years. Several previous works in online ALD focused on solving a single abusive

language problem in a single domain, like Twitter, and have not been successfully transferable

to the general ALD task or domain. In this paper, we introduce a new generic ALD framework,

MACAS, which is capable of addressing several types of ALD tasks across different domains.

Our generic framework covers multi-aspect abusive language embeddings that represent the

target and content aspects of abusive language and applies a textual graph embedding that

analyses the user’s linguistic behaviour. Then, we propose and use the cross-attention gate

flow mechanism to embrace multiple aspects of abusive language. Quantitative and qualitative

evaluation results show that our ALD algorithm rivals or exceeds the six state-of-the-art ALD

algorithms across seven ALD datasets covering multiple aspects of abusive language and

different online community domains.
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A1 Introduction

Abusive language in online communities has become a significant societal problem (Nobata

et al., 2016) and online abusive language detection (ALD) aims to identify any type of insult,

vulgarity, or profanity that debases a target or group online. It is not only limited to detecting

offensive language (Razavi et al., 2010), cyberbullying (Xu et al., 2012), and hate speech

(Djuric et al., 2015), but also to more nebulous or implicit forms of abuse. Many social media

companies and researchers have utilised multiple resources, including machine learning,

human reviewers and lexicon-based text analytics to detect abusive language (Waseem, 2016;

Qian et al., 2018). However, none of them can perfectly resolve the ALD task because of the

difficulties of moderating user content and in classifying ambiguous posts (Metz and Issac,

2019). On the technical side, previous ALD models were developed on only a few subtasks

(e.g. hate speech, racism, sexism) in a single domain (like Twitter), and each specialised

model is not successfully transferable to general ALD in different online communities.

Our research question is, “What would be the best generic ALD model that can be used for

different types of abusive language detection sub-tasks and in different online communities?"

To solve this, we found that Waseem et al. (2017) reviewed the existing online abusive

language detection literature, and defined a generic abusive language typology that can

encompass the targets of a wide range of abusive language subtasks in different types of

domains. The typology is categorised in the following two aspects:

(1) Target aspect: The abuse can be directed towards either a) a specific individual/entity

or b) a generalised group. This is an essential sociological distinction as the latter

refers to a whole category of people, like a race or gender, rather than a specific

individual or organisation;

(2) Content aspect: The abusive content can be explicit or implicit. Whether directed

or generalised, explicit abuse is unambiguous in its potential to be damaging, while

implicit abusive language does not immediately imply abuse (through the use of

sarcasm, for example).
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For example, assume that we have a tweet “F***”. “You are sooo sweet like other girls”. It

includes all those aspects; the directed target (“yourself”), the generalised target (“girls”), the

explicit content (“F***”), and the implicit content (“You are sooo sweet”).

Inspired by this abusive language typology, we propose a new generic ALD framework,

MACAS (Multi-Aspect Cross Attention Super Joint for ALD), using aspect models and a

cross-attention aspect gate flow. First, we build four different types of abusive language

aspect embeddings, including directed target, generalised target, explicit content, and implicit

content. We also propose to use a heterogeneous graph to analyse the linguistic behaviour of

each author and learn word and document embeddings with graph convolutional networks

(GCNs). Not every online community (e.g. news forums) allows user-to-user relationships

(e.g. follower-following), so we avoid using user-community relationship information. Then,

we propose a cross-attention aspect gate flow to obtain the mutual enhancement between

the two aspects. The gate flow contains two gates, the target gate and the content gate,

and then fuses the outputs of those gates. The target gate draws on the content probability

distribution, utilising the semantic information of the whole input sequence along with the

target source, while the content gate takes in the target aspect probability distribution as

supplementary information for content-based prediction. For evaluation, we test six state-of-

the-art ALD models across seven datasets focused on different aspects and collected from

different domains. Our proposed model rivals or exceeds those ALD methods on all of the

evaluated datasets. The contributions of the paper can be summarised as follows:

• We perform a rigorous comparison of six state-of-the-art ALD models across seven

ALD benchmark datasets, and find those models do not embrace different types of

abusive language aspects in different online communities.

• We propose a generic new ALD algorithm that enables explicit integration of multiple

aspects of abusive language, and detection of generic abusive language behaviour in

different domains. The proposed model rivals state-of-the-art algorithms on ALD

benchmark datasets and performs best overall.
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A2 Related Work

A2.1 ALD Datasets

We briefly review the seven ALD benchmark datasets (Table A.1), which were collected from

different online community sources and focused on multiple compositions.

• Waseem (Waseem and Hovy, 2016) is a Twitter ALD dataset regarding the specific

aspects of racism and sexism. The collected tweets were labelled into Racism, Sexism

or None.

• HatEval (Basile et al., 2019) is a Twitter-based hate speech detection dataset released

in SemEval-2019. It provides a general-level hate speech annotation, Hateful or

Non-hateful, especially against immigrants and women.

• OffEval (Zampieri et al., 2019) covers the Twitter-based offensive language detec-

tion task in SemEval-2019. It annotates as Offensive or Not-offensive, and includes

insults, threats, and any form of untargeted profanity.

• Davids (Davidson et al., 2017) is a Twitter-based ALD dataset, which includes

three classes, Hate, Offensive or Neither based on the hate speech lexicon from

Hatebase.org.

• Founta (Founta et al., 2018) is a large Twitter-based ALD dataset claimed to be

annotated with high accuracy based on their proposed incremental and iterative

annotation method. It is annotated with four classes, Hateful, Abusive, Normal or

Spam.

• FNUC (Gao and Huang, 2017) is a hate speech detection dataset, which was collected

from complete Fox News discussion threads, and annotated with the general level

categories Hateful or Non-hateful.

• StormW(de Gibert et al., 2018) is a Stormfront-based hate speech detection dataset

with general-level labels Hate and NoHate. Stormfront is a supremacist forum where

people promote white nationalism and antisemitism.
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TABLE A.1. Comparison and Statistical analysis of seven benchmark datasets
evaluated in this paper. The composition column represents different class
aspects, and the class distribution in each dataset.“Fox News DT” is short for
“Fox News Discussion Threads”.

Dataset Source Size Composition
Waseem Twitter 16.2k Racism(11.97%), Sexism(19.43%), None(68.60%)
HatEval Twitter 13k Hateful(42.08%), Non-hateful(57.92%)
OffEval Twitter 13.2k Offensive(33.23%), Not-offensive(66.77%)
Davids Twitter 24.8k Hate(5.77%), Offensive(77.43%), Neither(16.80%)
Founta Twitter 99k Abusive(27.15%), Hateful(4.97%), Normal(53.85%), Spam(4.97%)
FNUC Fox News DT 1.5k Hateful(28.50%), Non-hateful(71.50%)

StormW Stormfront(forum) 10.7k Hate(10.93%), NoHate(89.07%)

A2.2 ALD Approaches

In the early stages, ALD was commonly addressed via hand-crafted rules and manual feature

engineering. The first reported ALD work(Spertus, 1997) utilised a decision tree to detect

hostile messages based on heuristic rules. Yin et al. (2009) and Razavi et al. (2010) added

lexicon-based features together with semantic rules and designed a linear SVM and Naïve

Bayes classifier for detecting hostile language. Djuric et al. (2015) first applied in ALD neural

networks with the paragraph2vec (Le and Mikolov, 2014) representation. Nobata et al. (2016)

introduced a Yahoo! dataset and tested it with neural networks by applying a combination

of word, character-based and syntactic features. Recently, deep learning techniques have

become popular in ALD. Badjatiya et al. (2017) tested FaxtText/Glove, Convolutional Neural

Networks (CNNs), and Long Short-Term Memory (LSTMs) in detecting hate speech. Park

and Fung (2017) designed a HybridCNN (word-level and character-level) model on abusive

tweet detection in both one-step and two-step styles. Several works have applied bidirectional

Gated Recurrent Unit (Bi-GRU) networks with Latent Topic Clustering (LTC) Lee et al. (2018)

and a transformer-based framework Bugueño and Mendoza (2019). Some works integrated

user profiling into their ALD models. Qian et al. (2018) utilised the bi-LSTM to model the

historical behaviour of users to generate inter-user and intra-user representation. Mishra et al.

(2018) applied node2vec (Grover and Leskovec, 2016) to the constructed community graph of

users to derive the user embedding. However, a user profiling-based approach is only possible

when the user profiles are public and when the domain provides the user-community relation

information.
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A3 The MACAS ALD Model

FIGURE A.1. The conceptual architecture of our model MACAS

We propose the Multi-Aspect Cross Attention Super Joint model for ALD. It is designed as a

generic ALD that can embrace different types of abusive language aspects in different online

communities. As shown in Figure A.1, MACAS can be divided into three main phases:

(1) Multi-Aspect features embedding[Sec.A3.1]. The Multi-Aspect Embedding Layer

represents the understanding of multi-aspects of abusive language for detecting

generic abusive language behaviours. We focus on two main aspects, target and

content, and each aspect has two sub-aspects. 1) Target aspect represents abuse

directed towards either a) a specific individual/entity or b) a generalised group (e.g.

gender or race). 2) Content aspect covers a) explicit or b)implicit. Explicit abuse is

unambiguous in its potential to be damaging, while implicit abusive language does

not immediately impact (e.g. sarcasm). In addition to this, if the platform provides

users’ historical posts, we apply Graph Convolutional Network(GCN)s to build a

word-document graph embedding that represents the linguistic behaviours of users.

Not every online community (e.g. news forums) has user-to-user relationships (e.g.

follower-following), so we avoid using user-community relationships and community

network information.

(2) Cross-Attention Gate Flow for integrating multi-aspects [Sec.A3.2] The Cross-

Attention gate produces the joint integration of the target aspect and content aspect

model and obtains the mutual enhancement between the two aspects. This is for

producing well-integrated multi-aspects and improving the performance of generic

ALD.
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(3) Final Aggregation of learned ALD embeddings [Sec.A3.3] We aggregate multi-

aspect embeddings and the user’s linguistic behaviour embedding across the online

post using convolutional neural networks, and produce the ALD using a multi-layer-

perceptron.

A3.1 Multi-Aspect Embedding Layer 1

A3.1.1 Target: Directed Abuse Embedding

Directed abuse is abuse towards a specific individual or entity (Waseem et al., 2017). To

model this aspect, a named entity recognition (NER) approach is used. To train the NER

model, we apply stacked bi-directional LSTMs, which are one of state-of-the-art models

(Chiu and Nichols, 2016). We extract the vector before the final Softmax layer of the NER

model and use it as the Directed Abuse Embedding.

A3.1.2 Target: Generalised Abuse Embedding

Generalised abuse tends to target people belonging to a small set of categories, primarily

gender. The gender debiasing embedding (Kaneko and Bollegala, 2019) is applied. The

vocabulary set (V ) is split into 4 mutually exclusive sets of words, namely, masculine (Vm),

feminine (Vf ), neutral (Vn) and stereotypical (Vs). Each word is represented by a vector which

is calculated by minimising a loss function to satisfy the criteria: 1) protect the feminine

information for words in Vf ; 2) protect the masculine information for words in Vm; 3) protect

the neutrality for words in Vn (iv) remove gender biases for words in Vs.

A3.1.3 Content: Explicit Abuse Embedding

For explicit abuse, whether the target is directed or generalised, explicit abuse is usually

indicated by specific keywords from the homophobic slurs lexicon. We used dict2vec (Tissier

et al., 2017), which aims to learn word embeddings based on natural language dictionaries.
1In this paper, we use only four state-of-the-art natural language processing techniques that represent each

abusive language aspect well. However, we expect that more techniques for each aspect of embedding would
produce better performance.
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In this paper, the model is trained by Cambridge, Collins, Oxford, dictionary.com, and we

add an abusive language lexicon2. This approach first defines strong pairs and weak pairs of

words. If both words appear in each other’s definition, the word pair is defined as a strong

pair. If only one word appears in the other’s definition, the word pair is defined as a weak

pair. If the words do not appear in each other’s definition they are not related. Each word is

represented by a vector. Strongly paired words have more similar vectors then weakly paired

words which in turn have more similar vectors than unrelated words.

A3.1.4 Content: Implicit Abuse Embedding

Implicit abusive language does not immediately imply or denote abuse, similar to sarcasm.

Here we use a hybrid of CNN and LSTM-based sarcasm detection models (Ghosh and Veale,

2016). The vector before the final Softmax layer of the sarcasm detection model is the

Implicit Abuse Embedding.

A3.1.5 Additional: User Linguistic Behaviour Embedding

We model the graph by setting each comment in the training set as a document. The vocabulary

is the set of all words in the documents. The corpus is the collection of all documents. The

nodes of our graph are the union of the documents and the vocabulary. An edge weighted

1 exists between each node and itself. An edge exists between a document and a word if

the word is in that document. The edge is weighted with the TF-IDF for the (document,

word) pair, within the corpus. An edge exists between two words if they have a non-negative

point-wise mutual information (PMI) with a sliding window size of 20, within the corpus.

The weight for the edge is the PMI for the word pair. The edge weightings are compiled

into an adjacency matrix combined with the graph’s degree matrix and passed into a 2-layer

GCN trained to map each document to each user as a label. For datasets without the user

id provided, we use the actual classification target as the document node label. From this

network, we obtain embeddings for each node, that is an embedding of each document or each

2http://www.rsdb.org
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(A) CAGF at the Beginning (B) CAGF at the Beginning and the Middle

FIGURE A.2. Variances of Cross-Attention Gate Flow

word. The trained word embeddings Ge are fed into transformer encoders to get linguistic

behaviour outputs.

A3.2 Cross-Attention Gate Flow

In the Cross-Attention Gate Flow, first, we use a cross transformer encoder for refining our

four types of embedding: Directed abuse embedding D, Generalized abuse embedding G,

Explicit abuse embedding E and Implicit abuse embedding I . Before putting them into the

cross transformer encoders, we combine D with G as Target embedding Te and broadcast

I to sequence length N , then combine it with E as Content embedding Ce. Normally, for

the transformer encoder (Vaswani et al., 2017), the attention is calculated using key (K of

dimension dk), query (Q), value (V ):

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (A.1)

However, to produce the joint integration of the target aspect model and content aspect model,

we apply the cross-transformer to Te and Ce. As shown in Figure A.2 for each transformer

encoder, we have K,Q,V for Te and Ce. The K,V of Te and Ce are switched, which means

K,V of Te goes to the transformer encoder of Ce and K,V of Ce goes to Te’s encoder. Then



A3 THE MACAS ALD MODEL 153

attention is calculated by

Attentioncontent = softmax(
QcK

T
t√

dk
)Vt, Attentiontarget = softmax(

QtK
T
c√

dk
)Vc (A.2)

We call the cross transformer here Cross at Beginning(CB). Similar to the original transformer

encoder, each encoder contains one or more encoder stack(s), which mainly consist of two

sub-layers: a multi-head attention layer and a fully connected feed-forward neural network

(FNN). A residual connection followed by layer normalization is employed around each of the

two sub-layers before feeding to the next sub-layer. Another way to produce joint integration

occurs before the FNN layer. The output of Multi-Head Attention will be the input for the

FNN layer, and then an Add & Norm layer is applied. Normally, the output of the transformer

encoder is calculated by

Output = norm(FNN(OMHA) +OMHA) (A.3)

The input for FNN can also be switched for Content and Target, which is called Cross in the

Middle (CM), the output of the transformer encoder will be calculated by

Th = norm(FNN(CMHA) + TMHA), Ch = norm(FNN(TMHA) + CMHA) (A.4)

If the cross happens both at the beginning and in the middle, the structure will be called Cross

at the Beginning and in the Middle (CBM). The comparison of different cross-transformer

structures will be discussed in A5.2. Both of the input embeddings Te and Ce are of shape [N ,

De], where De is the sum of the dimension of the concatenated embedding. The transformer

encoder will output Th and Ch in the same shape [N , De]. The hidden state of encoders Th

from Te and Ch from Ce will be used to compute the initial abusive language probability,

which is the major input of our bi-directional aspect gate flow.

On top of the Cross-Attention, we introduce the Bi-directional Aspect Gate Flow that contains

two gates: content gate and target gate. Denote the input sequences to our gates from

the previous layer encoder as Th ∈ RN×DT and Ch ∈ RN×DC where N is the sequence

length while DT and DC equal to the dimension of target embedding and content embedding
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respectively. In the content gate, we first flatten Th to be Thf ∈ R1×(N∗DT ). We then pass Thf

through a dense layer and apply the Softmax function. The resultant PTh is a D-dimensional

probability vector, where D = Ncls is the number of distinct labels to classify, WC ∈ RD×DC

is the weight matrix and bC ∈ R1×D is the bias vector. Then we broadcast PTh over N tokens.

This yields ˆPTh ∈ RN×D. Then we concatenate ˆPTh with transformer encoder output state

Ch from content source, generating the augmented content state OC ∈ RN×(D+DC). We

then again flatten OC and pass the output to the dense layer, producing an output matrix

PC ∈ R1×D.

The procedure in the target gate is almost the same as the content gate. Here we flattened

the input sequence Ch, generating the flattened output Chf ∈ R1×(N∗DC). We then pass the

result through a dense layer and apply the Softmax function. The resultant PCh is also

broadcast to be ˆPCh and then concatenated with the target encoder output state Th, where

OT ∈ RN×(D+DT ) is the augmented target state as output matrix. Finally, OT is also flattened

and then passed to the dense layer, which produces the output matrix PT ∈ R1×D.

A3.3 Final Fusion

We propose a hierarchical fusion, which fuses linguistic behaviour outputs (PG) with content

gate output (PC) and target gate output (PT ) respectively and uses two CNNs to integrate that

fusion to get CC and CT , then we concatenate CC and CT then flatten it to FF . Finally, a

multi-layer perceptron (MLP) is used for the final prediction:

L1 = ReLU(W1 · FF + b1), L2 = ReLU(W2 · L1 + b2), Z = softmax(W3 · L2 + b3)

(A.5)

Three layers are stacked. For each layer, Wi and bi represent the weight matrix and bias

vector, and the ReLU activation function is used for the first two layers. For the last layer, to

get the probability of each class Z, the softmax layer is used.
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A4 Evaluation Setting

We conducted experiments on all seven datasets with and without GCN as well as using

the three different types of cross-transformer variances, which will be discussed in A5.2.

The GCN embedding dimension for this linguistic behaviour graph is DLBG = 200. For

transformer encoder configuration, we used dropout rate = 0.5, encoder number = 2, head

number = 3, and hidden dimension = 1296. The models are trained with batch size = 16, and

lr(learning rate) and number of epochs differ: Waseem: lr = 4e-4, epochs = 6, HatEval: lr =

1e-7, epochs = 6, OffEval: lr = 1e-7, epochs = 13, Davids: lr = 4e-4, epochs = 6, Founta:

lr = 1e-5, epochs = 8, FNUC: lr = 1e-6, epochs = 13, StormW: lr = 1e-6, epochs = 7. The

hyper-parameters are decided by splitting the training set into 90:10 training and validation

set.

The followings are the models evaluated in our experiments.

• TF-IDF features and SVM Classifier (TIS): TIS (Yin et al., 2009) applies TF-IDF

with SVM Classifier to detect abusive language. First, TF-IDF weights of words are

generated and a Support Vector Machine with radial basis function (RBF) kernel is

trained to classify different kinds of abusive languages.

• One-Two Steps Hybrid CNN (OTH): OTH (Park and Fung, 2017) used a Hybrid

CNN (word-level and character-level) model and applied it to abusive tweet detection.

We applied Chars2vec as a character embedding and Glove as a word embedding.

The convolutional layers with kernel sizes 256, 128, and 64 are stacked, and the

model is trained using a learning rate of 4e-5 with 10 epochs.

• Multi-Features with RNN (MFR): MFR (Mehdad and Tetreault, 2016) used a

hybrid character-based and word-based Recurrent Neural Network (RNN) model

to detect abusive language. After the Chars2vec and Glove embeddings, there is a

vanilla stacked RNN. Three RNN layers with hidden dimensions 128, 128, and 64

are stacked, and the model is trained using learning rate 4e-6 with 10 epochs.

• Two-step Word-level LSTM (TWL): TWL (Badjatiya et al., 2017) produced

LSTM-derived representations with a Gradient Boosted Decision Trees classifier.
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The model applied LSTM to Glove embeddings, and the results are fed into the

model. Three LSTM layers with hidden dimensions 128,128,64 are stacked, and the

model is trained using learning rate 4e-6 with 10 epochs.

• Latent Topic Clustering with Bi-GRU (LTC): LTC (Lee et al., 2018) applies a

Bi-GRU with latent topic clustering, which extracts the topic information from the

aggregated hidden states of the two directions of the Bi-GRU. Three Bi-GRU layers

with hidden dimensions 128, 128, and 64 are stacked, and the model is trained using

learning rate 4e-5 with 10 epochs.

• Character-based Transformer (CBT): CBT (Bugueño and Mendoza, 2019) uses

a transformer-based classifier with Chars2vec embeddings. Transformer encoders

with hidden dimension 400, learning rate 4e-6 with 3 epochs are used.



A5 EXPERIMENTS AND RESULTS 157

A5 Experiments and Results

A5.1 Performance Comparison

In this part, we compare our model with six baseline models over all seven datasets, discussed

in Sec A2.1. These baseline models are constructed with various word representations as

well as different neural networks or classifiers. Table A.2 presents the weighted average f1

performance of each baseline model and our model over each dataset. Our model outperforms

the baseline models for all these seven datasets. Applying multiple aspect embeddings enables

our model to process the texts from multi-perspective views. The Cross-Attention gate

flow makes it possible to obtain the mutual enhancement between the two different aspects.

Although some of the baseline models such as OTH, MFR also combine two embedding

approaches (Chars2vec and Glove) to get more information, they still just consider the general

information of the texts rather than extract information in a targeted fashion from various

aspects. For these reasons, our model can achieve performance above the baseline models.

As well as comparing our model with the baseline models, we also make some observations

by comparing the six baseline models among themselves. Firstly, OTH and MFR use the

combined embeddings of Chars2vec and Glove which gives more information. So, they can

achieve relatively better weighted average f1 scores compared to most other baseline models

which just use a single embedding method. Secondly, the results of TWL and LTC indicate

that the bi-directional recurrent neural network leads to better performance than the simple

forward recurrent neural network. This means that not only the future states but also the past

ones will affect the prediction results. Thirdly, although we may not consider TF-IDF with

SVM to be as good as Chars2vec or Glove with deep neural networks, TIS baseline model

never gets the worst weighted f1 score for the seven datasets when compared with other

models. In fact, it even outperforms other baseline models on Waseem and Founta. For both

datasets, there might be some particular words which are really significant for identifying the

class. So TF-IDF can achieve good results for these two datasets.
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TABLE A.2. Overall f1 results from seven ALD models (including MACAS)
evaluated across all seven benchmark datasets. We highlight the top 2 models
for each dataset, using darker colours for higher performance. For all the
benchmark datasets, we train models on the train split and report results on
test splits.

Dataset TIS OTH MFR TWL LTC CBT Ours
Waseem 83.56 79.10 62.39 73.88 79.94 79.11 86.00
HatEval 41.63 40.48 53.17 52.03 53.14 49.25 53.97
OffEval 75.37 76.84 55.59 67.15 77.90 58.71 78.80
Davids 88.11 88.37 79.44 83.74 87.56 88.94 90.34
Founta 79.58 78.59 73.64 75.23 79.49 72.04 80.36
FNUC 68.92 64.51 70.71 65.67 69.78 67.07 73.20

StormW 82.73 85.48 82.06 81.91 83.83 82.90 85.86

TABLE A.3. Some prediction example from our model MACAS compared
to the baselines. Actual C.: Actual Class, Correctly C.: Correctly Classified
Models, Incorrectly C.: Incorrectly Classified Models.

Dataset Abusive Example Actual C. Correctly C. Incorrectly C.
Waseem Really bitch really? Get on

the runway and back in the
kitchen.

Sexism TIS, Ours OTH, MFR, TWL,
LTC, CBT

Waseem thegeek_chick Please an-
swer...

Sexism TIS, Ours OTH, MFR, TWL,
LTC, CBT

Waseem RT randomfox: #ManS-
preading #FeminismIsAwful
#WomenAgainstFeminism

Sexism TIS, Ours OTH, MFR, TWL,
LTC, CBT

Waseem RT @asredasmyhair: Fems,
for the love of God, please
stop propagating the wage gap
myth. #FemFreeFriday

Sexism TIS, Ours OTH, MFR, TWL,
LTC, CBT

FNUC BLM is a Hate group Given
Birth by Obama’s comments
That put a target on the backs
of police officers

Hateful Ours TIS, OTH, MFR,
TWL, LTC, CBT

StormW i am a white nationalist of
a christian faith but still am
a white nationalist for racial
survival the anti racist christi-
ans are the true chirstians en-
emy

Hate OTH, Ours TIS, MFR, TWL,
LTC, CBT

Next, an analysis of examples to show how different models perform on different datasets

is conducted, and the results are shown in Table A.3. The first example is from Waseem,
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“Really bitch really? Get on the runway and back in the kitchen.”, which should be predicted

as Sexism. It is quite explicit in that the word “bitch” is in this sentence, and this makes

TIS predict it as Sexism easily since TF-IDF is focusing on the word occurrence. Besides,

“back in the kitchen” is implicit Sexism, implying women should be in the kitchen. Similar

patterns can be found in the second instance “thegeek_chick please answer” by explicitly

mentioning the word ‘chick’. The third and fourth samples represent abusive language or

hate speech about the topic of Feminism. The third explicitly stated the words ‘Feminism’

and ‘Awful’ and TIS and our model successfully detected the abuse with an explicit hate

speech aspect identification. Our model, which considers the explicit and implicit aspects, can

predict the sentence as Sexism easily. Another example is from FNUC, “BLM is a Hate group

Given Birth by Obama’s comments That put a target on the backs of police officers” which

should be Hateful. This comment insults the “Black Life Matters” by calling it a Hate Group.

Normally, describing something as a hate group is not hate speech, but in this case, calling

BLM a hate group is a racism. This is not easy for the baseline models to spot, and only our

model predicts it correctly. For the last example from StormW, “i am a white nationalist of a

christian faith but still am a white nationalist for racial survival the anti racist christians are

the true chirstians enemy”, the user described himself as “white nationalist” which is one

kind of hate speech, and OTH can predict this sentence as Hate. The reason is that the CNN

used in OTH can capture the information for phrases, which is the “white nationalist” here.

Besides, our model can predict this sentence correctly since the sentence is a general explicit

hate speech.

A5.2 Ablation Testing - Cross-attention gate flow

In this part, three different structures of cross-transformer encoders are tested: 1) Cross-

transformer at the beginning of the transformer encoder (CB): exchanging content’s and

target’s K and V at the beginning of the transformer encoders as in Figure A.2; 2) Cross-

transformer in the middle of the transformer encoder (CM): exchanging content’s and target’s

input for Feed Forward layer in the transformer encoder, which is in the middle of the

transformer encoders; 3) Cross-transformer at both places (CBM): the combination of CB
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TABLE A.4. Abusive language detection results across seven benchmark
datasets for MACAS with two cross attention aspect gate flow mechanisms and
graph embedding. We highlight the top 2 settings for each dataset. The darker
the colour, the better the performance. The comparison provides different
parameters (N) of final fusion layers, including N=1 or 3. (CB: cross-attention
at the beginning, CBM: cross-attention at the beginning and the middle, G: the
user linguistic behaviour graph embedding)

Methods Waseem HatEval OffEval Davids Founta FNUC StormW
CB, no G 82.35 53.97 78.80 90.34 80.36 65.31 82.90

CB, G, N=1 86.00 51.88 75.06 87.36 76.90 73.20 84.52
CB, G, N=3 83.76 42.71 75.03 88.24 75.42 68.39 85.86
CBM, no G 81.53 53.28 77.37 90.25 80.28 65.67 84.14

CBM, G, N=1 85.22 39.91 72.60 90.12 76.06 68.92 85.09
CBM, G, N=3 82.77 42.86 75.10 90.11 77.03 68.16 85.12

and CM. Due to the poor performance of CM, only results for 7 datasets with CB and CBM

structure are shown in Table A.4. Besides, to find whether and how GCN is improving the

performance of our model, different structures are also compared: 1) Model without GCN; 2)

Model with GCN using hierarchical fusion, repeating one or three times. We show one and

three times here because on all the datasets our model achieves the best performance with one

or three repeated fusions when GCN is also used. Two conclusions are drawn based on the

results of CB and CBM:

Firstly, the best model is always the CB model, and the second best is always the CBM model

with the same GCN structure. So comparing between CB and CBM structures, CB has a

better performance and we use this structure as our final model. Besides, in most cases, CB

outperforms CBM if they share the same GCN structure, which also shows that, overall, CBM

is worse than CB. Considering the fact that CM is the worst, we can say that cross in the

middle transformer encoder will lower the model performance. Exchanging content’s and

target’s K,V is important since it allows target aspects to query on the content aspects and

vice versa. However, exchanging values before Feed Forward Layer only gives a different add

and norm which doesn’t increase the interaction between content aspects and target aspects

usefully.

Secondly, our model can have a better performance with GCN when there is a user id in

the dataset. Not all the datasets provide the user id, and as mentioned in Sec A3.1, User
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TABLE A.5. Ablation studies comparing different types integration of multi-
aspects for the generic ALD model. In the proposed model, MACAS, we
introduced four aspect embeddings, including directed abuse (D), generalised
abuse (G), explicit abuse (E), and implicit abuse (I). Directed and generalised
abuses are in the group of a target aspect, while explicit and implicit abuses
are in a content aspect group. The ablation testing is conducted in a different
combination of aspect embedding from each higher-level of aspect groups.
The highest performance is highlighted in green, the lowest is marked in red.

Combinations Waseem HatEval OffEval Davids Founta FNUC StormW
D + E 80.16 49.94 75.81 89.58 80.02 66.03 82.23
D + I 61.93 47.04 54.63 68.27 67.88 64.51 81.91

D + E + I 80.57 47.11 69.95 87.11 79.80 64.03 81.91
G + E 79.67 52.78 76.95 86.92 79.39 65.56 84.85
G + I 80.10 53.63 57.38 87.52 79.35 64.24 81.91

G + E + I 79.12 48.71 72.17 89.19 79.14 65.96 82.04
D + G + E 78.63 53.60 73.78 88.51 80.23 68.28 82.44
D + G + I 79.74 52.65 75.12 89.76 79.76 65.31 83.44

D + G + E + I 82.35 53.97 78.80 90.34 81.57 65.31 83.93

Linguistic Behavior embedding is trained by using the user id as the target. For those datasets

without user id, the real abusive labels are used as the training target. By comparison, we can

find that Waseem, StormW, and FNUC which provide user id in the datasets have a better

performance using a model with GCN, and the other four datasets, which don’t provide user

id, have a better performance using a model without GCN. Therefore, for the dataset with user

id, User Linguistic Behavior which is from GCN, can improve the performance of our model.

And for those datasets without user id, the model structure without GCN is recommended.

A5.3 Ablation Testing - Multi-aspect embedding

To check how aspect embeddings contribute to the model, an ablation test on different

combinations of the embeddings is conducted on all these seven datasets. We use the CB

model without GCN for the prediction. Table A.5 presents the weighted average f1 scores

for 9 different combinations of four aspect embedding models, including Directed abuse D,

Generalised abuse G, Explicit abuse E, and Implicit abuse I . Each target and content aspect

should include at least one embedding.



162 A DETECT ALL ABUSE! TOWARD UNIVERSAL ABUSIVE LANGUAGE DETECTION MODELS

For Waseem, the D+G+E+I combination achieves the best performance with the weighted

average f1 score of 82.35 and most other combinations have a slightly lower performance. In

contrast, D+I gets the worst weighted f1 score of 61.93. The reason why D+I is much worse

than other combinations may lie in two facts: 1) In this dataset, abusive language is generally

more explicit rather than directly aiming at a specific target in an implicit way. 2) Even

humans can not distinguish Direct Abuse in an Implicit way easily, and it can be very difficult

for the annotators to annotate the label correctly. Besides, the D +G+ E + I combination

outperforms other cases because it takes all the aspects into consideration. Similar results

occur on other Twitter datasets Davids, HatEval, OffEval and Founta, D + G + E + I

achieves the best while D + I is much worse. For FNUC, due to the small volume of

the dataset and imbalanced labels, not all the combinations have a good prediction result.

D +G+ E having the best performance implies that the dataset doesn’t have a large number

of implicit abuse samples. For StormW, D +G+E + I gets the best performance. Besides,

G+ E also has a good performance. The reason is that this dataset is collected from a racist

forum and most hate speech on that website is generally abusive in an explicit way. Based on

the analysis of the different embedding combinations on these datasets, we can conclude that

the embeddings used may vary based on different kinds of datasets, but combining them all is

always a good idea. Although four specific different embeddings are selected in our model to

represent four different aspects, other kinds of embeddings could also be used as long as they

can represent the corresponding aspects.
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A6 Conclusion

Abusive language detection is an essential but challenging task, and it is almost impossible

to successfully encompass all different abusive language tasks in different domains. The

evaluation also shows that most of the state-of-the-art ALD algorithms do not generalise their

model to different types of abusive language problems or datasets. In this paper, we proposed a

new generic abusive language model, called MACAS, which applied multi-aspect embeddings

to represent generalised characteristics of the domain and introduced a cross-attention gate

flow model to achieve better performance by mutual enhancement between the target aspect

and the content aspect. The results indicate that our framework was successful and effective in

capturing abusive language aspects in different domains. Compared to other ALD models, our

model successfully works in general abusive language detection, and it is hoped that MACAS

provides some insight into the future direction of generic abusive language detection.


	Statement of Originality
	Acknowledgements
	List of Publications
	Authorship Attribution Statement
	Abstract
	Contents
	List of Figures
	Chapter 1. Introduction
	1.1. Graph Neural Network for Natural Language Processing
	1.2. Graph Neural Network for Text Classification
	1.3. Graph Neural Network for Knowledge Graph Completion
	1.4. Contributions
	1.5. Outline

	Chapter 2. Literature review
	2.1. Overview of Literature Review
	2.1.1. Summary of GNN for Text Classification
	2.1.2. Summary of GNN for Knowledge Graph Completion

	2.2. Corpus-level GNN for Text Classification
	2.2.1. Document and Word Nodes as a Graph
	2.2.2. Document Nodes as a Graph
	2.2.3. Word Nodes as a Graph
	2.2.4. Extra Topic Nodes in the Graph
	2.2.5. Critical Analysis

	2.3. Document-level GNN for Text Classification
	2.3.1. Local Word Consecutive Graph
	2.3.2. Global Word Co-occurrence Graph
	2.3.3. Other word graphs
	2.3.4. Critical Analysis

	2.4. GNN for Knowledge Graph Completion
	2.4.1. Static KGC and GNN
	2.4.2. Temporal KGC and GNN


	Chapter 3. Understanding Graph Convolutional Networks for Text Classification
	3.1. Introduction
	3.2. Related Work
	3.2.1. Graph Neural Networks in NLP

	3.3. GCN-based Text Classification
	3.3.1. Graph Convolutional Networks
	3.3.2. TextGCN

	3.4. GCN Analysis on Text Classification
	3.4.1. Graph Node Construction Analysis
	3.4.2. Graph Edge Construction Analysis
	3.4.3. Graph Learning

	3.5. Experiment setup
	3.5.1. Datasets
	3.5.2. Implementation Details

	3.6. Discussion and Analysis
	3.6.1. Effect of Node Embedding
	3.6.2. Effect of Edge Construction
	3.6.3. Effect of GCN Learning

	3.7. Conclusions

	Chapter 4. ME-GCN: Multi-dimensional Edge-Embedded Graph Convolutional Networks
	4.1. Introduction
	4.2. Related Works
	4.2.1. Semi-supervised text classification
	4.2.2. GNN for Text Classification

	4.3. ME-GCN
	4.3.1. Textual Graph Construction
	4.3.2. ME-GCN Learning

	4.4. Evaluation Setup
	4.4.1. Dataset
	4.4.2. Baselines
	4.4.3. Settings
	4.4.4. Hyperparemeter Search

	4.5. Results Analysis
	4.5.1. Performance Evaluation
	4.5.2. Learning and Pooling Variant Testing
	4.5.3. Impact of Edge Feature Dimension
	4.5.4. Impact of Ratio of Labelled Docs
	4.5.5. Comparison of Embedding Variants
	4.5.6. Number of parameters

	4.6. Conclusion

	Chapter 5. InducT-GCN: Inductive Graph Convolutional Networks for Text Classification
	5.1. Introduction
	5.2. Related Work
	5.2.1. Graph Neural Networks
	5.2.2. Text Classification Using GNN

	5.3. InducT-GCN
	5.3.1. Revisit TextGCN
	5.3.2. Tranductive and Inductive Nature
	5.3.3. InducT-GCN Graph Construction
	5.3.4. InducT-GCN Learning and Testing
	5.3.5. Space and Time Analysis

	5.4. Evaluation Setup
	5.4.1. Dataset
	5.4.2. Baselines
	5.4.3. Settings

	5.5. Result
	5.5.1. Performance Evaluation
	5.5.2. Impact of Test Size
	5.5.3. Impact of Initial Word Embedding
	5.5.4. Computation Time Results
	5.5.5. Performance in Full Dataset

	5.6. Conclusion

	Chapter 6. Re-Temp: Relation-Aware Temporal Representation Learning
	6.1. Introduction
	6.2. Related Work
	6.2.1. Static KGC methods
	6.2.2. Temporal KGC methods

	6.3. Re-Temp
	6.3.1. Problem Formulation
	6.3.2. Explicit Temporal Representation
	6.3.3. Sequential GNN-based Encoder
	6.3.4. Decoder
	6.3.5. Two-Phase Propagation
	6.3.6. Ensemble Modelling

	6.4. Experiment Setup
	6.4.1. Dataset
	6.4.2. Baselines
	6.4.3. Running Details
	6.4.4. Evaluation Metrics

	6.5. Experiments Results
	6.5.1. Performance Comparison
	6.5.2. Impact of history length
	6.5.3. Ablation Study
	6.5.4. Ensemble Model Evaluation
	6.5.5. Model Varirants Experiments

	6.6. Conclusion

	Chapter 7. Conclusion and Future Outlook
	7.1. Conclusion
	7.2. Future outlook
	7.2.1. Future Work on Proposed Method
	7.2.2. Future Works on GNN for Text Classification and Knowledge Graph Completion


	References
	Appendix A. Detect All Abuse! Toward Universal Abusive Language Detection Models
	A1. Introduction
	A2. Related Work
	A2.1. ALD Datasets
	A2.2. ALD Approaches

	A3. The MACAS ALD Model
	A3.1. Multi-Aspect Embedding Layer In this paper, we use only four state-of-the-art natural language processing techniques that represent each abusive language aspect well. However, we expect that more techniques for each aspect of embedding would produce better performance.
	A3.2. Cross-Attention Gate Flow
	A3.3. Final Fusion

	A4. Evaluation Setting
	A5. Experiments and Results
	A5.1. Performance Comparison
	A5.2. Ablation Testing - Cross-attention gate flow
	A5.3. Ablation Testing - Multi-aspect embedding

	A6. Conclusion


