1,489 research outputs found

    A tunable coupling scheme for implementing high-fidelity two-qubit gates

    Full text link
    The prospect of computational hardware with quantum advantage relies critically on the quality of quantum gate operations. Imperfect two-qubit gates is a major bottleneck for achieving scalable quantum information processors. Here, we propose a generalizable and extensible scheme for a two-qubit coupler switch that controls the qubit-qubit coupling by modulating the coupler frequency. Two-qubit gate operations can be implemented by operating the coupler in the dispersive regime, which is non-invasive to the qubit states. We investigate the performance of the scheme by simulating a universal two-qubit gate on a superconducting quantum circuit, and find that errors from known parasitic effects are strongly suppressed. The scheme is compatible with existing high-coherence hardware, thereby promising a higher gate fidelity with current technologies

    Electric Field Control of Soliton Motion and Stacking in Trilayer Graphene

    Get PDF
    The crystal structure of a material plays an important role in determining its electronic properties. Changing from one crystal structure to another involves a phase transition which is usually controlled by a state variable such as temperature or pressure. In the case of trilayer graphene, there are two common stacking configurations (Bernal and rhombohedral) which exhibit very different electronic properties. In graphene flakes with both stacking configurations, the region between them consists of a localized strain soliton where the carbon atoms of one graphene layer shift by the carbon-carbon bond distance. Here we show the ability to move this strain soliton with a perpendicular electric field and hence control the stacking configuration of trilayer graphene with only an external voltage. Moreover, we find that the free energy difference between the two stacking configurations scales quadratically with electric field, and thus rhombohedral stacking is favored as the electric field increases. This ability to control the stacking order in graphene opens the way to novel devices which combine structural and electrical properties

    Band Structure Mapping of Bilayer Graphene via Quasiparticle Scattering

    Get PDF
    A perpendicular electric field breaks the layer symmetry of Bernal-stacked bilayer graphene, resulting in the opening of a band gap and a modification of the effective mass of the charge carriers. Using scanning tunneling microscopy and spectroscopy, we examine standing waves in the local density of states of bilayer graphene formed by scattering from a bilayer/trilayer boundary. The quasiparticle interference properties are controlled by the bilayer graphene band structure, allowing a direct local probe of the evolution of the band structure of bilayer graphene as a function of electric field. We extract the Slonczewski-Weiss-McClure model tight binding parameters as γ0=3.1\gamma_0 = 3.1 eV, γ1=0.39\gamma_1 = 0.39 eV, and γ4=0.22\gamma_4 = 0.22 eV.Comment: 12 pages, 4 figure

    Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations

    Full text link
    We use the zero-temperature random-field Ising model to study hysteretic behavior at first-order phase transitions. Sweeping the external field through zero, the model exhibits hysteresis, the return-point memory effect, and avalanche fluctuations. There is a critical value of disorder at which a jump in the magnetization (corresponding to an infinite avalanche) first occurs. We study the universal behavior at this critical point using mean-field theory, and also present preliminary results of numerical simulations in three dimensions.Comment: 12 pages plus 2 appended figures, plain TeX, CU-MSC-747

    Race and place differences in patients hospitalized with an acute coronary syndrome: Is there double jeopardy? Findings from TRACE-CORE

    Get PDF
    The objectives of this longitudinal study were to examine differences between whites and blacks, and across two geographical regions, in the socio-demographic, clinical, and psychosocial characteristics, hospital treatment practices, and post-discharge mortality for hospital survivors of an acute coronary syndrome (ACS). In this prospective cohort study, we performed in-person interviews and medical record abstractions for patients discharged from the hospital after an ACS at participating sites in Central Massachusetts and Central Georgia during 2011-2013. Among the 1143 whites in Central Massachusetts, 514 whites in Central Georgia, and 277 blacks in Central Georgia, we observed a gradient of socioeconomic position with whites in Central Massachusetts being the most privileged, followed by whites and then blacks from Central Georgia; similar gradients pertained to psychosocial vulnerability (e.g., 10.7%, 25.1%, and 49.1% had cognitive impairment, respectively) and to the hospital receipt of all 4 evidence-based cardiac medications (35.5%, 18.1%, and 14.4%, respectively) used in the acute management of patients hospitalized with an ACS. Multivariable adjusted odds ratios (95% confidence intervals) for the receipt of a percutaneous coronary intervention for whites and blacks in Georgia vs. whites in Massachusetts were 0.57 (0.46-0.71) and 0.40(0.30-0.52), respectively. Thirty-day and one-year mortality risks exhibited a similar gradient. The results of this contemporary clinical/epidemiologic study in a diverse patient cohort suggest that racial and geographic disparities continue to exist for patients hospitalized with an ACS

    The effects of socioeconomic status and indices of physical environment on reduced birth weight and preterm births in Eastern Massachusetts

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Air pollution and social characteristics have been shown to affect indicators of health. While use of spatial methods to estimate exposure to air pollution has increased the power to detect effects, questions have been raised about potential for confounding by social factors.Methods: A study of singleton births in Eastern Massachusetts was conducted between 1996 and 2002 to examine the association between indicators of traffic, land use, individual and area-based socioeconomic measures (SEM), and birth outcomes ( birth weight, small for gestational age and preterm births), in a two-level hierarchical model.Results: We found effects of both individual ( education, race, prenatal care index) and area-based ( median household income) SEM with all birth outcomes. The associations for traffic and land use variables were mainly seen with birth weight, with an exception for an effect of cumulative traffic density on small for gestational age. Race/ethnicity of mother was an important predictor of birth outcomes and a strong confounder for both area-based SEM and indices of physical environment. The effects of traffic and land use differed by level of education and median household income.Conclusion: Overall, the findings of the study suggested greater likelihood of reduced birth weight and preterm births among the more socially disadvantaged, and a greater risk of reduced birth weight associated with traffic exposures. Results revealed the importance of controlling simultaneously for SEM and environmental exposures as the way to better understand determinants of health.This work is supported by the Harvard Environmental Protection Agency (EPA) Center, Grants R827353 and R-832416, and National Institute for Environmental Health Science (NIEHS) ES-0002

    X-ray absorption spectroscopy systematics at the tungsten L-edge

    Get PDF
    A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, has been interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W<sup>0</sup>(PMe<sub>3</sub>)<sub>6</sub>], [W<sup>II</sup>Cl<sub>2</sub>(PMePh<sub>2</sub>)<sub>4</sub>], [W<sup>III</sup>Cl<sub>2</sub>(dppe)<sub>2</sub>][PF<sub>6</sub>] (dppe = 1,2-bis(diphenylphosphino)ethane), [W<sup>IV</sup>Cl<sub>4</sub>(PMePh<sub>2</sub>)<sub>2</sub>], [W<sup>V</sup>(NPh)Cl<sub>3</sub>(PMe<sub>3</sub>)<sub>2</sub>], and [W<sup>VI</sup>Cl<sub>6</sub>] correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio (EBR) of the L<sub>3,2</sub>-edges and the L<sub>1</sub> rising-edge energy with metal Z<sub>eff</sub>, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>] and [W<sup>IV</sup>(mdt)<sub>2</sub>(CN)<sub>2</sub>]<sup>2–</sup> (mdt<sup>2–</sup> = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively W<sup>IV</sup> species. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: 1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Z<sub>eff</sub> in the species of interest; 2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS; 3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal-ligand distances, exaggerate the difference between formal oxidation state and metal Z<sub>eff</sub> or, as in the case of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>], add other subtlety by modulating the redox level of other ligands in the coordination sphere

    The gray matter volume of the amygdala is correlated with the perception of melodic intervals: a voxel-based morphometry study

    Get PDF
    Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses

    A Comprehensive and Universal Method for Assessing the Performance of Differential Gene Expression Analyses

    Get PDF
    The number of methods for pre-processing and analysis of gene expression data continues to increase, often making it difficult to select the most appropriate approach. We present a simple procedure for comparative estimation of a variety of methods for microarray data pre-processing and analysis. Our approach is based on the use of real microarray data in which controlled fold changes are introduced into 20% of the data to provide a metric for comparison with the unmodified data. The data modifications can be easily applied to raw data measured with any technological platform and retains all the complex structures and statistical characteristics of the real-world data. The power of the method is illustrated by its application to the quantitative comparison of different methods of normalization and analysis of microarray data. Our results demonstrate that the method of controlled modifications of real experimental data provides a simple tool for assessing the performance of data preprocessing and analysis methods
    corecore