443 research outputs found

    Spherical collapse with dark energy

    Full text link
    I discuss the work of Maor and Lahav [1], in which the inclusion of dark energy into the spherical collapse formalism is reviewed. Adopting a phenomenological approach, I consider the consequences of - a) allowing the dark energy to cluster, and, b) including the dark energy in the virialization process. Both of these issues affect the final state of the system in a fundamental way. The results suggest a potentially differentiating signature between a true cosmological constant and a dynamic form of dark energy. This signature is unique in the sense that it does not depend on a measurement of the value of the equation of state of dark energy.Comment: To appear in the proceedings of the ``Peyresq Physics 10" Workshop, 19 - 24 June 2005, Peyresq, Franc

    Three-body decay of the d* dibaryon

    Full text link
    Under certain circumstances, a three-body decay width can be approximated by an integral involving a product of two off-shell two-body decay widths. This ``angle-average'' approximation is used to calculate the πNN\pi NN decay width of the d(Jπ=3+,T=0)d^*(J^\pi=3^+, T=0) dibaryon in a simple Δ2\Delta^2 model for the most important Feynman diagrams describing pion emissions with baryon-baryon recoil and meson retardation. The decay width is found to be about 0.006 (0.07, 0.5) MeV at the dd^* mass of 2065 (2100, 2150) MeV for input dynamics derived from the Full Bonn potential. The smallness of this width is qualitatively understood as the result of the three-body decay being ``third forbidden''. The concept of \ell forbiddenness and the threshold behavior of a three-body decay are further studied in connection with the πNN\pi NN decay of the dibaryon d(Jπ=0,T=0or2)d'(J^\pi=0^-, T=0 or 2) where the idea of unfavorness has to be introduced. The implications of these results are briefly discussed.Comment: 15 pages, RevTeX, two-column journal style, six figure

    The effect of memory on relaxation in a scalar field theory

    Full text link
    We derive a kinetic equation with a non-Markovian collision term which includes a memory effect, from Kadanoff-Baym equations in ϕ4\phi^4 theory within the three-loop level for the two-particle irreducible (2PI) effective action. The memory effect is incorporated into the kinetic equation by a generalized Kadanoff-Baym ansatz.Based on the kinetic equations with and without the memory effect, we investigate an influence of this effect on decay of a single particle excitation with zero momentum in 3+1 dimensions and the spatially homogeneous case. Numerical results show that, while the time evolution of the zero mode is completely unaffected by the memory effect due to a separation of scales in the weak coupling regime, this effect leads first to faster relaxation than the case without it and then to slower relaxation as the coupling constant increases.Comment: 12 pages, 6 eps figure

    Non-Markovian entanglement dynamics in coupled superconducting qubit systems

    Full text link
    We theoretically analyze the entanglement generation and dynamics by coupled Josephson junction qubits. Considering a current-biased Josephson junction (CBJJ), we generate maximally entangled states. In particular, the entanglement dynamics is considered as a function of the decoherence parameters, such as the temperature, the ratio rωc/ω0r\equiv\omega_c/\omega_0 between the reservoir cutoff frequency ωc\omega_c and the system oscillator frequency ω0\omega_0, % between ω0\omega_0 the characteristic frequency of the %quantum system of interest, and ωc\omega_c the cut-off frequency of %Ohmic reservoir and the energy levels split of the superconducting circuits in the non-Markovian master equation. We analyzed the entanglement sudden death (ESD) and entanglement sudden birth (ESB) by the non-Markovian master equation. Furthermore, we find that the larger the ratio rr and the thermal energy kBTk_BT, the shorter the decoherence. In this superconducting qubit system we find that the entanglement can be controlled and the ESD time can be prolonged by adjusting the temperature and the superconducting phases Φk\Phi_k which split the energy levels.Comment: 13 pages, 3 figure

    How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature?

    Get PDF
    The coupling of the electromagnetic field to gravity is an age-old problem. Presently, there is a resurgence of interest in it, mainly for two reasons: (i) Experimental investigations are under way with ever increasing precision, be it in the laboratory or by observing outer space. (ii) One desires to test out alternatives to Einstein's gravitational theory, in particular those of a gauge-theoretical nature, like Einstein-Cartan theory or metric-affine gravity. A clean discussion requires a reflection on the foundations of electrodynamics. If one bases electrodynamics on the conservation laws of electric charge and magnetic flux, one finds Maxwell's equations expressed in terms of the excitation H=(D,H) and the field strength F=(E,B) without any intervention of the metric or the linear connection of spacetime. In other words, there is still no coupling to gravity. Only the constitutive law H= functional(F) mediates such a coupling. We discuss the different ways of how metric, nonmetricity, torsion, and curvature can come into play here. Along the way, we touch on non-local laws (Mashhoon), non-linear ones (Born-Infeld, Heisenberg-Euler, Plebanski), linear ones, including the Abelian axion (Ni), and find a method for deriving the metric from linear electrodynamics (Toupin, Schoenberg). Finally, we discuss possible non-minimal coupling schemes.Comment: Latex2e, 26 pages. Contribution to "Testing Relativistic Gravity in Space: Gyroscopes, Clocks, Interferometers ...", Proceedings of the 220th Heraeus-Seminar, 22 - 27 August 1999 in Bad Honnef, C. Laemmerzahl et al. (eds.). Springer, Berlin (2000) to be published (Revised version uses Springer Latex macros; Sec. 6 substantially rewritten; appendices removed; the list of references updated

    Measurement of single pi0 production in neutral current neutrino interactions with water by a 1.3 GeV wide band muon neutrino beam

    Full text link
    Neutral current single pi0 production induced by neutrinos with a mean energy of 1.3 GeV is measured at a 1000 ton water Cherenkov detector as a near detector of the K2K long baseline neutrino experiment. The cross section for this process relative to the total charged current cross section is measured to be 0.064 +- 0.001 (stat.) +- 0.007 (sys.). The momentum distribution of produced pi0s is measured and is found to be in good agreement with an expectation from the present knowledge of the neutrino cross sections.Comment: 6 pages, 4 figures, Submitted to Phys. Lett.

    Search for Neutral Q-balls in Super-Kamiokande II

    Full text link
    A search for Q-balls induced groups of successive contained events has been carried out in Super-Kamiokande II with 541.7 days of live time. Neutral Q-balls would emit pions when colliding with nuclei, generating a signal of successive contained pion events along a track. No candidate for successive contained event groups has been found in Super-Kamiokande II, so upper limits on the possible flux of such Q-balls have been obtained.Comment: 5 pages, 5 figures, Submitted to Phys. Lett.
    corecore