193 research outputs found

    Asymmetric Protocols for Scalable High-Rate Measurement-Device-Independent Quantum Key Distribution Networks

    Full text link
    Measurement-device-independent quantum key distribution (MDI-QKD) can eliminate detector side channels and prevent all attacks on detectors. The future of MDI-QKD is a quantum network that provides service to many users over untrusted relay nodes. In a real quantum network, the losses of various channels are different and users are added and deleted over time. To adapt to these features, we propose a type of protocols that allow users to independently choose their optimal intensity settings to compensate for different channel losses. Such protocol enables a scalable high-rate MDI-QKD network that can easily be applied for channels of different losses and allows users to be dynamically added/deleted at any time without affecting the performance of existing users.Comment: Changed the title to better represent the generality of our method, and added more discussions on its application to alternative protocols (in Sec. II, the new Table II, and Appendix E with new Fig. 9). Added more conceptual explanations in Sec. II on the difference between X and Z bases in MDI-QKD. Added additional discussions on security of the scheme in Sec. II and Appendix

    Pre-fixed Threshold Real Time Selection Method in Free-space Quantum Key Distribution

    Full text link
    Free-space Quantum key distribution (QKD) allows two parties to share a random key with unconditional security, between ground stations, between mobile platforms, and even in satellite-ground quantum communications. Atmospheric turbulence causes fluctuations in transmittance, which further affect the quantum bit error rate (QBER) and the secure key rate. Previous post-selection methods to combat atmospheric turbulence require a threshold value determined after all quantum transmission. In contrast, here we propose a new method where we pre-determine the optimal threshold value even before quantum transmission. Therefore, the receiver can discard useless data immediately, thus greatly reducing data storage requirement and computing resource. Furthermore, our method can be applied to a variety of protocols, including, for example, not only single-photon BB84, but also asymptotic and finite-size decoy-state BB84, which can greatly increase its practicality

    Split Time Series into Patches: Rethinking Long-term Series Forecasting with Dateformer

    Full text link
    Time is one of the most significant characteristics of time-series, yet has received insufficient attention. Prior time-series forecasting research has mainly focused on mapping a past subseries (lookback window) to a future series (forecast window), and time of series often just play an auxiliary role even completely ignored in most cases. Due to the point-wise processing within these windows, extrapolating series to longer-term future is tough in the pattern. To overcome this barrier, we propose a brand-new time-series forecasting framework named Dateformer who turns attention to modeling time instead of following the above practice. Specifically, time-series are first split into patches by day to supervise the learning of dynamic date-representations with Date Encoder Representations from Transformers (DERT). These representations are then fed into a simple decoder to produce a coarser (or global) prediction, and used to help the model seek valuable information from the lookback window to learn a refined (or local) prediction. Dateformer obtains the final result by summing the above two parts. Our empirical studies on seven benchmarks show that the time-modeling method is more efficient for long-term series forecasting compared with sequence modeling methods. Dateformer yields state-of-the-art accuracy with a 40% remarkable relative improvement, and broadens the maximum credible forecasting range to a half-yearly level

    Experimental Quantum Fingerprinting

    Get PDF
    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof of concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity.Comment: 11 pages, 6 Figure

    Ursodeoxycholic Acid Inhibits Glioblastoma Progression via Endoplasmic Reticulum Stress Related Apoptosis and Synergizes with the Proteasome Inhibitor Bortezomib

    Get PDF
    Ursodeoxycholic acid (UDCA) has demonstrated cancer suppressive potential in several tumors. Here, we investigated the antitumor potential and biochemical mechanism of UDCA on glioblastoma multiforme (GBM), the deadliest form of brain cancer with a median survival of 15 months. Cell viability was assessed using the CCK-8 and colony forming assays. Expression profiles were obtained using RNA sequencing, and PCR and Western blot were used to validate changes in related markers at the RNA and protein levels. Flow cytometry was used to examine cell cycle, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS). UDCA inhibited GBM cell viability in a dose- and time-dependent manner. Flow cytometry demonstrated that cells were arrested in the G1 phase and underwent apoptosis. The RNA sequencing results showed UDCA treatment in part targeted gene expression related to mitochondria and endoplasmic reticulum (ER). UDCA indeed led to decreased MMP, overproduction of ROS, and ER stress. Three critical ER stress sensors ATF6, IRE1α, and PERK were increased in the acute phase. Additionally, combining UDCA with the proteasome inhibitor bortezomib (BTZ) achieved a synergistic effect through enhancing the PERK/ATF4/CHOP pathway and protracting ER stress. UDCA inhibited GBM progression, and the combination with BTZ achieved a synergistic effect via protracted ER stress. Thus, UDCA, alone or with combination of BTZ, shows promise as a possible therapeutic agent for the treatment of GBM.acceptedVersio
    corecore