48 research outputs found

    Reforestation in southern China: revisiting soil N mineralization and nitrification after 8 years restoration

    Get PDF
    Nitrogen availability and tree species selection play important roles in reforestation. However, long-term field studies on the effects and mechanisms of tree species composition on N transformation are very limited. Eight years after tree seedlings were planted in a field experiment, we revisited the site and tested how tree species composition affects the dynamics of N mineralization and nitrification. Both tree species composition and season significantly influenced the soil dissolved organic carbon (DOC) and nitrogen (DON). N-fixing Acacia crassicarpa monoculture had the highest DON, and 10-mixed species plantation had the highest DOC. The lowest DOC and DON concentrations were both observed in Eucalyptus urophylla monoculture. The tree species composition also significantly affected net N mineralization rates. The highest rate of net N mineralization was found in A. crassicarpa monoculture, which was over twice than that in Castanopsis hystrix monoculture. The annual net N mineralization rates of 10-mixed and 30-mixed plantations were similar as that of N-fixing monoculture. Since mixed plantations have good performance in increasing soil DOC, DON, N mineralization and plant biodiversity, we recommend that mixed species plantations should be used as a sustainable approach for the restoration of degraded land in southern China

    Climate change : strategies for mitigation and adaptation

    Get PDF
    The sustainability of life on Earth is under increasing threat due to humaninduced climate change. This perilous change in the Earth's climate is caused by increases in carbon dioxide and other greenhouse gases in the atmosphere, primarily due to emissions associated with burning fossil fuels. Over the next two to three decades, the effects of climate change, such as heatwaves, wildfires, droughts, storms, and floods, are expected to worsen, posing greater risks to human health and global stability. These trends call for the implementation of mitigation and adaptation strategies. Pollution and environmental degradation exacerbate existing problems and make people and nature more susceptible to the effects of climate change. In this review, we examine the current state of global climate change from different perspectives. We summarize evidence of climate change in Earth’s spheres, discuss emission pathways and drivers of climate change, and analyze the impact of climate change on environmental and human health. We also explore strategies for climate change mitigation and adaptation and highlight key challenges for reversing and adapting to global climate change

    Analysis on the situation of subjective well-being and its influencing factors in patients with ankylosing spondylitis

    Full text link
    BACKGROUND: To examine the subjective well-being (SWB) in patients with ankylosing spondylitis (AS) compared with the healthy controls, and to explore the associations between SWB and demographic characteristics, disease-specific variables in AS patients. METHODS: SWB was assessed with General Well-Being Schedule (GWBS) in 200 AS patients and 210 healthy controls. Comparisons among subgroups were performed to investigate how certain aspects operate as favorable or adverse factors in influencing SWB in the patients with AS. RESULTS: Both men and women with AS reported significantly impaired SWB on all scales of the GWBS except for the Control (O) scale. The results revealed that better sleep, lower disease activity and more family care predicted higher SWB. In AS patients, positive attitude towards therapy prospect was significantly associated with higher SWB. Therapy prospect refers to the hope of patients about the disease treatment. CONCLUSIONS: Compared with general population, SWB might be affected by the onset of AS. There are significant associations between SWB and sleep quality, BASDAI, APGAR, therapy prospect

    Cooling vest incorporated with phase change materials (PCMs): how much benefit is there?

    No full text
    The aim of this study was to investigate torso cooling benefit of various PCM vests in a simulated warm environment (Ta= 34 °C, RH=56 %, Va=0.4 m/s). A pre-wetted cotton torso fabric skin was used to simulate sweating on a thermal manikin (Tmanikin=34 °C). Six conditions were tested: nude fabric skin (Fabric Skin), Vest A without (VA) and with frozen gels with a melting temperature (Tm) of 0 °C (VA+Gel), Vest B without (VB) and with PCMs of Tm=21 °C (VB+PCM21) and Vest B with PCMs of Tm=24 °C (VB+PCM24). Cooling benefits for the three vests were: 10 W/m2 (VA+Gel), -49 W/m2 (VB+PCM21) and -52 W/m2 (VB+PCM24). The restricted evaporation rates were: 97 g/h (VA+Gel), 80 g/h (VB+PCM21), and 75 g/h (VB+PCM24). Torso fabric skin temperature was reduced by 1.6 °C (VA+Gel), 1.2 °C (VB+PCM21) and 0.2 °C (VB+PCM24). The results revealed that all the cooling vests presented negative benefits in a simulated work activity and environmental condition. The observed positive benefit could be only found on reducing local torso skin temperature

    Scoping Review of Socio-Emotional Competencies Research in Higher Education Students

    No full text
    This is the protocol for a scoping review of socio-emotional competencies research in higher education students

    CO2 Uptake Offsets Other Greenhouse Gas Emissions from Salt Marshes with Chronic Nitrogen Loading

    No full text
    Coastal wetlands are known for exceptional productivity, but they also receive intense land-based nitrogen (N) loading. In Narragansett Bay, RI (USA), coastal ecosystems have received anthropogenic N inputs from wastewater for more than two centuries. Greenhouse gas fluxes were studied throughout a growing season (2016) in three coastal wetlands with contrasting histories of nitrogen loading. The wetland with the highest historic N load (Mary’s Creek, Warwick, RI) had significantly greater nitrous oxide (N2O) and methane (CH4) emissions than the other two sites. However, the two marshes with historic N loads (Mary’s Creek and Mary Donovan, Little Compton, RI) also had greater rates of CO2 uptake than the reference site (Nag Marsh, Prudence Island, RI). Their CO2 uptake rates far outpaced their other greenhouse gas emissions. Mary’s Creek had the greatest above- and below-ground plant biomass, vertical accretion rates, and carbon content of soils. Spartina alterniflora height was greatest at Mary’s Creek and Mary Donovan marsh. The following growing season (2017), greenhouse gases were compared across four plant-defined ecological zones in Mary’s Creek. Higher rates of CO2 uptake and CH4 emissions were found in the S. alterniflora-vegetated creekbank compared to high marsh zones or bare mudflats. Potential denitrifying enzyme activity did not significantly differ across the four zones nor between Mary’s Creek and Nag Marsh, suggesting a consistently high capacity to completely reduce N loads. These results support efforts to protect and restore these coastal ecosystems for their carbon sequestration function even despite prevalence of anthropogenic N loading

    Oligomerization and Cooperative RNA Synthesis Activity of Hepatitis C Virus RNA-Dependent RNA Polymerase

    No full text
    The NS5B RNA-dependent RNA polymerase encoded by hepatitis C virus (HCV) plays a key role in viral replication. Reported here is evidence that HCV NS5B polymerase acts as a functional oligomer. Oligomerization of HCV NS5B protein was demonstrated by gel filtration, chemical cross-linking, temperature sensitivity, and yeast cell two-hybrid analysis. Mutagenesis studies showed that the C-terminal hydrophobic region of the protein was not essential for its oligomerization. Importantly, HCV NS5B polymerase exhibited cooperative RNA synthesis activity with a dissociation constant, K(d), of ≈22 nM, suggesting a role for the polymerase-polymerase interaction in the regulation of HCV replicase activity. Further functional evidence includes the inhibition of the wild-type NS5B polymerase activity by a catalytically inactive form of NS5B. Finally, the X-ray crystal structure of HCV NS5B polymerase was solved at 2.9 Å. Two extensive interfaces have been identified from the packing of the NS5B molecules in the crystal lattice, suggesting a higher-order structure that is consistent with the biochemical data
    corecore