235 research outputs found

    Enhancement of bend sensor properties as applied in a glove for use in neurorehabilitation settings

    Full text link
    Following hand function impairment caused by a neurological disorder, the functional level of the upper extremities has to be assessed in the clinical and rehabilitation settings. Current hand function evaluation tests are somewhat imprecise. Instrumented gloves allow finger motion monitoring during the performance of skilled tasks, such as grasping objects. As a result, they provide an objective tool for evaluating slight changes in the fine motor skills of the hand. Numerous gloves are based on resistive bend sensors, given that this is an easy to handle, low-cost, and reliable sensing element. When bending is not applied homogeneously along such a sensor, as is the case with finger-joint bending, its output response varies with the sensor's longitudinal position. Our goal is to determine the optimal sensor position with respect to the finger-joint in order to enhance the resolution of the sensors embedded in a glove. The validity of the integrated sensors is evaluated and the accuracy values are given

    Long-term soil warming decreases microbial phosphorus utilization by increasing abiotic phosphorus sorption and phosphorus losses

    Get PDF
    Phosphorus (P) is an essential and often limiting element that could play a crucial role in terrestrial ecosystem responses to climate warming. However, it has yet remained unclear how different P cycling processes are affected by warming. Here we investigate the response of soil P pools and P cycling processes in a mountain forest after 14 years of soil warming (+4 °C). Long-term warming decreased soil total P pools, likely due to higher outputs of P from soils by increasing net plant P uptake and downward transportation of colloidal and particulate P. Warming increased the sorption strength to more recalcitrant soil P fractions (absorbed to iron oxyhydroxides and clays), thereby further reducing bioavailable P in soil solution. As a response, soil microbes enhanced the production of acid phosphatase, though this was not sufficient to avoid decreases of soil bioavailable P and microbial biomass P (and biotic phosphate immobilization). This study therefore highlights how long-term soil warming triggers changes in biotic and abiotic soil P pools and processes, which can potentially aggravate the P constraints of the trees and soil microbes and thereby negatively affect the C sequestration potential of these forests

    Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought

    Get PDF
    Nitrification is a fundamental process in terrestrial nitrogen cycling. However, detailed information on how climate change affects the structure of nitrifier communities is lacking, specifically from experiments in which multiple climate change factors are manipulated simultaneously. Consequently, our ability to predict how soil nitrogen (N) cycling will change in a future climate is limited. We conducted a field experiment in a managed grassland and simultaneously tested the effects of elevated atmospheric CO2, temperature, and drought on the abundance of active ammonia-oxidizing bacteria (AOB) and archaea (AOA), comammox (CMX) Nitrospira, and nitrite-oxidizing bacteria (NOB), and on gross mineralization and nitrification rates. We found that N transformation processes, as well as gene and transcript abundances, and nitrifier community composition were remarkably resistant to individual and interactive effects of elevated CO2 and temperature. During drought however, process rates were increased or at least maintained. At the same time, the abundance of active AOB increased probably due to higher NH4+ availability. Both, AOA and comammox Nitrospira decreased in response to drought and the active community composition of AOA and NOB was also significantly affected. In summary, our findings suggest that warming and elevated CO2 have only minor effects on nitrifier communities and soil biogeochemical variables in managed grasslands, whereas drought favors AOB and increases nitrification rates. This highlights the overriding importance of drought as a global change driver impacting on soil microbial community structure and its consequences for N cycling

    Nitrogen Isotope Fractionation During Archaeal Ammonia Oxidation: Coupled Estimates From Measurements of Residual Ammonium and Accumulated Nitrite

    Get PDF
    The naturally occurring nitrogen (N) isotopes,N-15 and(14)N, exhibit different reaction rates during many microbial N transformation processes, which results in N isotope fractionation. Such isotope effects are critical parameters for interpreting natural stable isotope abundances as proxies for biological process rates in the environment across scales. The kinetic isotope effect of ammonia oxidation (AO) to nitrite (NO2-), performed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), is generally ascribed to the enzyme ammonia monooxygenase (AMO), which catalyzes the first step in this process. However, the kinetic isotope effect of AMO, or epsilon(AMO), has been typically determined based on isotope kinetics during product formation (cumulative product, NO2-) alone, which may have overestimated epsilon(AMO)due to possible accumulation of chemical intermediates and alternative sinks of ammonia/ammonium (NH3/NH4+). Here, we analyzed(15)N isotope fractionation during archaeal ammonia oxidation based on both isotopic changes in residual substrate (RS, NH4+) and cumulative product (CP, NO2-) pools in pure cultures of the soil strainNitrososphaera viennensisEN76 and in highly enriched cultures of the marine strainNitrosopumilus adriaticusNF5, under non-limiting substrate conditions. We obtained epsilon(AMO)values of 31.9-33.1 parts per thousand for both strains based on RS (delta(NH4+)-N-15) and showed that estimates based on CP (delta(NO2-)-N-15) give larger isotope fractionation factors by 6-8 parts per thousand. Complementary analyses showed that, at the end of the growth period, microbial biomass was(15)N-enriched (10.1 parts per thousand), whereas nitrous oxide (N2O) was highly(15)N depleted (-38.1 parts per thousand) relative to the initial substrate. Although we did not determine the isotope effect of NH(4)(+)assimilation (biomass formation) and N2O production by AOA, our results nevertheless show that the discrepancy between epsilon(AMO)estimates based on RS and CP might have derived from the incorporation of(15)N-enriched residual NH(4)(+)after AMO reaction into microbial biomass and that N2O production did not affect isotope fractionation estimates significantly

    Loss of nitrogen fixing capacity in a montane lichen is linked to increased nitrogen deposition

    Get PDF
    1. The circumboreal/circumpolar N2-fixing lichen Stereocaulon vesuvianum is among the most widespread and abundant fruticose species in montane Britain but has lost the capacity to fix N2 over large areas of the country. 2. To investigate whether loss of N2-fixation in S. vesuvianum is linked to increased N deposition, we examined thallus morphology, physiology and chemistry at twelve locations representing an N deposition gradient of 3–40 kg ha−1 year−1. Measurements were made in parallel on a non-N2-fixing reference species (Parmelia saxatilis). The presence or absence of cephalodia (N2-fixing nodules containing the cyanobacterium Stigonema sp) was recorded in over 500 herbarium specimens of S. vesuvianum dating back to 1820. 3. Cephalodium abundance in S. vesuvianum, and 15N concentration in S. vesuvianum and P. saxatilis, were strongly negatively correlated with N deposition and particularly with dry deposited N; cephalodia do not form at total N deposition rates ≥8–9 kg ha−1 year−1. Other morphological oddities in S. vesuvianum at N-polluted sites include increased apothecium (fungal reproductive structure) production and green algal biofilm development. Biofilm covered thalli without cephalodia lacked nitrogenase activity and cephalodia at sites where they rarely develop had nitrogenase activities typical for this species. The presence or absence of cephalodia in herbarium specimens of S. vesuvianum suggest that the present-day N-deposition linked gradient in N2-fixing capacity did not exist in the 19th century and largely developed between 1900–1940. 4. Synthesis. We provide clear evidence that N2-fixing capacity in S. vesuvianum has been lost in regions subjected to many decades of enhanced atmospheric N deposition. This loss is consistent with established models of diazotrophy, which identify supply of combined N as an inhibitor of N2-fixation. Progressive depletion of thallus 15N with increasing N deposition is in line with available data indicating that much atmospheric N pollution is 15N-depleted. Rates of nitrogenase activity in S. vesuvianum are low compared to other symbiotic systems and perhaps more likely supplanted by elevated N deposition. We suggest that other ecosystem compartments with low rates of fixation (e.g. soils) might also be susceptible to N pollution and merit investigation

    An Evaluation of the Tolerability and Feasibility of Combining 5-Amino-Levulinic Acid (5-ALA) with BCNU Wafers in the Surgical Management of Primary Glioblastoma.

    Get PDF
    Background Glioblastoma (GBM) is the commonest primary malignant brain tumour in adults and effective treatment options are limited. Combining local chemotherapy with enhanced surgical resection using 5-aminolevulinic acid (5-ALA) could improve outcomes. Here we assess the safety and feasibility of combining BCNU wafers with 5-ALA-guided surgery. Methods We conducted a multicentre feasibility study of 5-ALA with BCNU wafers followed by standard-of-care chemoradiotherapy (chemoRT) in patients with suspected GBM. Patients judged suitable for radical resection were administered 5-ALA pre-operatively and BCNU wafers at the end resection. Post-operative treatment continued as per routine clinical practice. The primary objective was to establish if combining 5-ALA and BCNU wafers is safe without compromising patients from receiving standard chemoRT. Results Seventy-two patients were recruited, sixty-four (88.9%) received BCNU wafer implants, and fifty-nine (81.9%) patients remained eligible following formal histological diagnosis. Seven (11.9%) eligible patients suffered surgical complications but only two (3.4%) were not able to begin chemoRT, four (6.8%) additional patients did not begin chemoRT within 6 weeks of surgery due to surgical complications. Eleven (18.6%) patients did not begin chemoRT for other reasons (other toxicity (n = 3), death (n = 3), lost to follow-up/withdrew (n = 3), clinical decision (n = 1), poor performance status (n = 1)). Median progression-free survival was 8.7 months (95% CI: 6.4-9.8) and median overall survival was 14.7 months (95% CI: 11.7-16.8). Conclusions Combining BCNU wafers with 5-ALA-guided surgery in newly diagnosed GBM patients is both feasible and tolerable in terms of surgical morbidity and overall toxicity. Any potential therapeutic benefit for the sequential use of 5-ALA and BCNU with chemoRT requires further investigation with improved local delivery technologies

    Challenges in measuring nitrogen isotope signatures in inorganic nitrogen forms: An interlaboratory comparison of three common measurement approaches

    Get PDF
    Rationale Stable isotope approaches are increasingly applied to better understand the cycling of inorganic nitrogen (Ni) forms, key limiting nutrients in terrestrial and aquatic ecosystems. A systematic comparison of the accuracy and precision of the most commonly used methods to analyze δ15N in NO3− and NH4+ and interlaboratory comparison tests to evaluate the comparability of isotope results between laboratories are, however, still lacking. Methods Here, we conducted an interlaboratory comparison involving 10 European laboratories to compare different methods and laboratory performance to measure δ15N in NO3− and NH4+. The approaches tested were (a) microdiffusion (MD), (b) chemical conversion (CM), which transforms Ni to either N2O (CM-N2O) or N2 (CM-N2), and (c) the denitrifier (DN) methods. Results The study showed that standards in their single forms were reasonably replicated by the different methods and laboratories, with laboratories applying CM-N2O performing superior for both NO3− and NH4+, followed by DN. Laboratories using MD significantly underestimated the “true” values due to incomplete recovery and also those using CM-N2 showed issues with isotope fractionation. Most methods and laboratories underestimated the at%15N of Ni of labeled standards in their single forms, but relative errors were within maximal 6% deviation from the real value and therefore acceptable. The results showed further that MD is strongly biased by nonspecificity. The results of the environmental samples were generally highly variable, with standard deviations (SD) of up to ± 8.4‰ for NO3− and ± 32.9‰ for NH4+; SDs within laboratories were found to be considerably lower (on average 3.1‰). The variability could not be connected to any single factor but next to errors due to blank contamination, isotope normalization, and fractionation, and also matrix effects and analytical errors have to be considered

    Do fine root morphological and functional adaptations support regrowth success in a tropical forest restoration experiment?

    Get PDF
    In early stages of forest succession plants have a high nutrient demand, but it is still a matter of debate if regrowth success of pioneer species is related to plant functional traits favoring fast soil colonization and nutrient acquisition. In general, we would expect trade-offs between plant growth performance and fine root morphological properties in association with different plant life-history strategies. Hence, we hypothesized that fast growing plants should have a more efficient root system that allows them to outcompete slow-growing neighbors in a resource-limited environment. To test our hypothesis we monitored plant successional growth dynamics in a tropical lowland rainforest reforestation experiment conducted in southwest Costa Rica. We collected absorptive roots (<2mm diameter) from plant individuals (comprising 20 tree species and 11 plant families) with different growth dynamics (as indicated by measurements of stem diameter and height). For these samples we assessed a suite of fine root morphological traits, such as legume nodulation status, and furthermore quantified fine root nutrient concentration and phosphatase activities, as well as microbial biomass and phosphatase activity in soils in the close vicinity of fine roots. We found stark differences in fine root characteristics between the tree species investigated in this study, such that fast growing species exhibited relatively larger specific root length and higher turnover, whereas slow growing species tend to rely on mechanical resistance by increasing root tissue density and root life span. Our results suggest that the identified differences in the root trait spectrum between fast and slow growing species reflect plant functional adaptions to resource limitation, edaphic properties and soil microbial symbioses. Our findings further highlight the crucial need to foster our understanding of belowground root morphological and physiological traits during forest succession, especially so when aiming to restore forest ecosystem functioning in formerly intensified land-use systems
    corecore