58 research outputs found

    Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination

    Get PDF
    Rhizomelic chondrodysplasia punctata (RCDP) is a developmental disorder characterized by hypotonia, cataracts, abnormal ossification, impaired motor development, and intellectual disability. The underlying etiology of RCDP is a deficiency in the biosynthesis of ether phospholipids, of which plasmalogens are the most abundant form in nervous tissue and myelin; however, the role of plasmalogens in the peripheral nervous system is poorly defined. Here, we used mouse models of RCDP and analyzed the consequence of plasmalogen deficiency in peripheral nerves. We determined that plasmalogens are crucial for Schwann cell development and differentiation and that plasmalogen defects impaired radial sorting, myelination, and myelin structure. Plasmalogen insufficiency resulted in defective protein kinase B (AKT) phosphorylation and subsequent signaling, causing overt activation of glycogen synthase kinase 3β (GSK3β) in nerves of mutant mice. Treatment with GSK3β inhibitors, lithium, or 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) restored Schwann cell defects, effectively bypassing plasmalogen deficiency. Our results demonstrate the requirement of plasmalogens for the correct and timely differentiation of Schwann cells and for the process of myelination. In addition, these studies identify a mechanism by which the lack of a membrane phospholipid causes neuropathology, implicating plasmalogens as regulators of membrane and cell signaling.We thank Paula Sampaio for microscopy support, Paula Magalhdes for genotyping, and Isabel Carvalho, Sofia Lamas, and Fatima Martins for excellent animal care. We are grateful to P. Brophy (University of Edinburgh) for the DRP2 antibody and to M. Baes (K.U. Leuven) for providing the Gnpat mouse strain. This work was funded by the Research Foundation of the European Leukodystrophy Association (ELA 2008-009C4, ELA 2010-042C5), by FEDER Funds through the Operational Competitiveness Program - COMPETE, and by national funds through the FCT - Fundacao para a Ciencia e a Tecnologia under the project FCOMP-01-0124-FEDER-015970 (PTDS/SAU-ORG/112406/2009). P. Brites is an FCT Investigator, and T. Ferreira da Silva was supported by the FCT (SFRH/BD/88160/2012)

    Supermassive Binaries and Extragalactic Jets

    Get PDF
    Some quasars show Doppler shifted broad emission line peaks. I give new statistics of the occurrence of these peaks and show that, while the most spectacular cases are in quasars with strong radio jets inclined to the line of sight, they are also almost as common in radio-quiet quasars. Theories of the origin of the peaks are reviewed and it is argued that the displaced peaks are most likely produced by the supermassive binary model. The separations of the peaks in the 3C 390.3-type objects are consistent with orientation-dependent "unified models" of quasar activity. If the supermassive binary model is correct, all members of "the jet set" (astrophysical objects showing jets) could be binaries.Comment: 31 pages, PostScript, missing figure is in ApJ 464, L105 (see http://www.aas.org/ApJ/v464n2/5736/5736.html

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)

    Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum

    Get PDF
    Peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways which include: (1.) etherphospholipid biosynthesis; (2.) fatty acid beta-oxidation; (3.) bile acid synthesis; (4.) docosahexaenoic acid (DHA) synthesis; (5.) fatty acid alpha-oxidation; (6.) glyoxylate metabolism; (7.) amino acid degradation, and (8.) ROS/RNS metabolism. The importance of peroxisomes for human health and development is exemplified by the existence of a large number of inborn errors of peroxisome metabolism in which one of these functions is impaired. Although the clinical signs and symptoms of affected patients differ depending upon the enzyme which is deficient and the extent of the deficiency, the disorders involved are usually (very) severe diseases with neurological dysfunction and early death in many of them. With respect to the role of peroxisomes in metabolism it is clear that peroxisomes are dependent on the functional interplay with other subcellular organelles to sustain their role in metabolism. Indeed, whereas mitochondria can oxidize fatty acids all the way to CO2 and H2O, peroxisomes are only able to chain-shorten fatty acids and the end products of peroxisomal beta-oxidation need to be shuttled to mitochondria for full oxidation to CO2 and H2O. Furthermore, NADH is generated during beta-oxidation in peroxisomes and beta-oxidation can only continue if peroxisomes are equipped with a mechanism to re-oxidize NADH back to NAD+, which is now known to be mediated by specific NAD(H)-redox shuttles. In this paper we describe the current state of knowledge about the functional interplay between peroxisomes and other subcellular compartments notably the mitochondria and endoplasmic reticulum for each of the metabolic pathways in which peroxisomes are involved

    Laboratory Diagnosis of Peroxisomal Disorders in the -Omics Era and the Continued Importance of Biomarkers and Biochemical Studies

    No full text
    The clinical as well as biochemical and genetic spectrum of peroxisomal diseases has markedly increased over the last few years, thanks to the revolutionary advances in the field of genome analysis and several -omics technologies. This has led to the recognition of novel disease phenotypes linked to mutations in previously identified peroxisomal genes as well as several hitherto unidentified peroxisomal disorders. Correct interpretation of the wealth of data especially coming from genome analysis requires functional studies at the level of metabolites (peroxisomal metabolite biomarkers), enzymes, and the metabolic pathway(s) involved. This strategy is not only required to identify the true defect in each individual patient but also to determine the extent of the deficiency as described in detail in this article

    An UPLC-MS/MS assay to measure glutathione as marker for oxidative stress in cultured cells

    No full text
    Oxidative stress plays a role in the onset and progression of a number of diseases, such as Alzheimer’s disease, diabetes and cancer, as well as ageing. Oxidative stress is caused by an increased production of reactive oxygen species and reduced antioxidant activity, resulting in the oxidation of glutathione. The ratio of reduced to oxidised glutathione is often used as a marker of the redox state in the cell. Whereas a variety of methods have been developed to measure glutathione in blood samples, methods to measure glutathione in cultured cells are scarce. Here we present a protocol to measure glutathione levels in cultured human and yeast cells using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC–MS/MS)
    • …
    corecore