261 research outputs found

    Autosomal recessive cerebellar ataxia caused by mutations in the PEX2 gene

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To expand the spectrum of genetic causes of autosomal recessive cerebellar ataxia (ARCA).</p> <p>Case report</p> <p>Two brothers are described who developed progressive cerebellar ataxia at 3 1/2 and 18 years, respectively. After ruling out known common genetic causes of ARCA, analysis of blood peroxisomal markers strongly suggested a peroxisomal biogenesis disorder. Sequencing of candidate <it>PEX </it>genes revealed a homozygous c.865_866insA mutation in the <it>PEX2 </it>gene leading to a frameshift 17 codons upstream of the stop codon. <it>PEX </it>gene mutations usually result in a severe neurological phenotype (Zellweger spectrum disorders).</p> <p>Conclusions</p> <p>Genetic screening of PEX2 and other PEX genes involved in peroxisomal biogenesis is warranted in children and adults with ARCA.</p

    Reverberation Mapping and the Physics of Active Galactic Nuclei

    Get PDF
    Reverberation-mapping campaigns have revolutionized our understanding of AGN. They have allowed the direct determination of the broad-line region size, enabled mapping of the gas distribution around the central black hole, and are starting to resolve the continuum source structure. This review describes the recent and successful campaigns of the International AGN Watch consortium, outlines the theoretical background of reverberation mapping and the calculation of transfer functions, and addresses the fundamental difficulties of such experiments. It shows that such large-scale experiments have resulted in a ``new BLR'' which is considerably different from the one we knew just ten years ago. We discuss in some detail the more important new results, including the luminosity-size-mass relationship for AGN, and suggest ways to proceed in the near future.Comment: Review article to appear in Astronomical Time Series, Proceedings of the Wise Observatory 25th Ann. Symposium. 24 pages including 7 figure

    A Novel Tandem Mass Spectrometry Method for Rapid Confirmation of Medium- and Very Long-Chain acyl-CoA Dehydrogenase Deficiency in Newborns

    Get PDF
    BACKGROUND:Newborn screening for medium- and very long-chain acyl-CoA dehydrogenase (MCAD and VLCAD, respectively) deficiency, using acylcarnitine profiling with tandem mass spectrometry, has increased the number of patients with fatty acid oxidation disorders due to the identification of additional milder, and so far silent, phenotypes. However, especially for VLCADD, the acylcarnitine profile can not constitute the sole parameter in order to reliably confirm disease. Therefore, we developed a new liquid chromatography tandem mass spectrometry (LC-MS/MS) method to rapidly determine both MCAD- and/or VLCAD-activity in human lymphocytes in order to confirm diagnosis. METHODOLOGY:LC-MS/MS was used to measure MCAD- or VLCAD-catalyzed production of enoyl-CoA and hydroxyacyl-CoA, in human lymphocytes. PRINCIPAL FINDINGS:VLCAD activity in controls was 6.95+/-0.42 mU/mg (range 1.95 to 11.91 mU/mg). Residual VLCAD activity of 4 patients with confirmed VLCAD-deficiency was between 0.3 and 1.1%. Heterozygous ACADVL mutation carriers showed residual VLCAD activities of 23.7 to 54.2%. MCAD activity in controls was 2.38+/-0.18 mU/mg. In total, 28 patients with suspected MCAD-deficiency were assayed. Nearly all patients with residual MCAD activities below 2.5% were homozygous 985A>G carriers. MCAD-deficient patients with one other than the 985A>G mutation had higher MCAD residual activities, ranging from 5.7 to 13.9%. All patients with the 199T>C mutation had residual activities above 10%. CONCLUSIONS:Our newly developed LC-MS/MS method is able to provide ample sensitivity to correctly and rapidly determine MCAD and VLCAD residual activity in human lymphocytes. Importantly, based on measured MCAD residual activities in correlation with genotype, new insights were obtained on the expected clinical phenotype

    ACBD5 deficiency causes a defect in peroxisomal very long-chain fatty acid metabolism

    Get PDF
    Background Acyl-CoA binding domain containing protein 5 (ACBD5) is a peroxisomal membrane protein with a cytosolic acyl-CoA binding domain. Because of its acyl-CoA binding domain, ACBD5 has been assumed to function as an intracellular carrier of acyl-CoA esters. In addition, a role for ACBD5 in pexophagy has been suggested. However, the precise role of ACBD5 in peroxisomal metabolism and/or functioning has not yet been established. Previously, a genetic ACBD5 deficiency was identified in three siblings with retinal dystrophy and white matter disease. We identified a pathogenic mutation in ACBD5 in another patient and studied the consequences of the ACBD5 defect in patient material and in ACBD5-deficient HeLa cells to uncover this role. Methods We studied a girl who presented with progressive leukodystrophy, syndromic cleft palate, ataxia and retinal dystrophy. We performed biochemical, cell biological and molecular studies in patient material and in ACBD5-deficient HeLa cells generated by CRISPR-Cas9 genome editing. Results We identified a homozygous deleterious indel mutation in ACBD5, leading to complete loss of ACBD5 protein in the patient. Our studies showed that ACBD5 deficiency leads to accumulation of very longchain fatty acids (VLCFAs) due to impaired peroxisomal beta-oxidation. No effect on pexophagy was found. Conclusions Our investigations strongly suggest that ACBD5 plays an important role in sequestering C26-CoA in the cytosol and thereby facilitates transport into the peroxisome and subsequent beta-oxidation. Accordingly, ACBD5 deficiency is a novel single peroxisomal enzyme deficiency caused by impaired VLCFA metabolism and leading to retinal dystrophy and white matter disease.Supported in part by funding through the Marie Curie Initial Training Networks (ITN) action to KDF, MS and HRW (FP7-2012-PERFUME-316723). MS is supported by the Biotechnology and Biological Sciences Research Council (BB/K006231/1; BB/N01541X/1)

    Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 years

    Get PDF
    Ankylosing spondylitis (AS) is a chronic rheumatic disease associated with spinal inflammation that subsequently leads to progression of structural damage and loss of function. The fully human anti-tumor necrosis factor (anti-TNF) antibody adalimumab reduces the signs and symptoms and improves overall quality of life in patients with active AS; these benefits have been maintained through 2 years of treatment. Our objective was to compare the progression of structural damage in the spine in patients with AS treated with adalimumab for up to 2 years versus patients who had not received TNF antagonist therapy. Radiographs from patients with AS who received adalimumab 40 mg every other week subcutaneously were pooled from the Adalimumab Trial Evaluating Long-Term Efficacy and Safety for Ankylosing Spondylitis (ATLAS) study and a Canadian AS study (M03-606). Radiographic progression from baseline to 2 years in the spine of adalimumab-treated patients from these two studies (adalimumab cohort, n = 307) was compared with an historic anti-TNF-naïve cohort (Outcome in AS International Study [OASIS], n = 169) using the modified Stoke AS Spine Score (mSASSS) method. mSASSS results were not significantly different between the adalimumab cohort and the OASIS cohort, based on baseline and 2-year radiographs. Mean changes in mSASSS from baseline to 2 years were 0.9 for the OASIS cohort and 0.8 for the adalimumab cohort (P = 0.771), indicating similar radiographic progression in both groups. When results for patients in the OASIS cohort who met the baseline disease activity criteria for the ATLAS and Canadian studies (OASIS-Eligible cohort) were analyzed, there was no significant difference in mean change in mSASSS from baseline to 2 years between OASIS-Eligible patients and adalimumab-treated patients; the mean changes in mSASSS were 0.9 for the OASIS-Eligible cohort and 0.8 for the adalimumab cohort (P = 0.744). Two years of treatment with adalimumab did not slow radiographic progression in patients with AS, as assessed by the mSASSS scoring system, when compared with radiographic data from patients naïve to TNF antagonist therap

    Peroxisomal alterations in Alzheimer’s disease

    Get PDF
    In Alzheimer’s disease (AD), lipid alterations are present early during disease progression. As some of these alterations point towards a peroxisomal dysfunction, we investigated peroxisomes in human postmortem brains obtained from the cohort-based, longitudinal Vienna-Transdanube Aging (VITA) study. Based on the neuropathological Braak staging for AD on one hemisphere, the patients were grouped into three cohorts of increasing severity (stages I–II, III–IV, and V–VI, respectively). Lipid analyses of cortical regions from the other hemisphere revealed accumulation of C22:0 and very long-chain fatty acids (VLCFA, C24:0 and C26:0), all substrates for peroxisomal β-oxidation, in cases with stages V–VI pathology compared with those modestly affected (stages I–II). Conversely, the level of plasmalogens, which need intact peroxisomes for their biosynthesis, was decreased in severely affected tissues, in agreement with a peroxisomal dysfunction. In addition, the peroxisomal volume density was increased in the soma of neurons in gyrus frontalis at advanced AD stages. Confocal laser microscopy demonstrated a loss of peroxisomes in neuronal processes with abnormally phosphorylated tau protein, implicating impaired trafficking as the cause of altered peroxisomal distribution. Besides the original Braak staging, the study design allowed a direct correlation between the biochemical findings and the amount of neurofibrillary tangles (NFT) and neuritic plaques, quantified in adjacent tissue sections. Interestingly, the decrease in plasmalogens and the increase in VLCFA and peroxisomal volume density in neuronal somata all showed a stronger association with NFT than with neuritic plaques. These results indicate substantial peroxisome-related alterations in AD, which may contribute to the progression of AD pathology

    Metabolic Profiling Reveals Distinct Variations Linked to Nicotine Consumption in Humans — First Results from the KORA Study

    Get PDF
    Exposure to nicotine during smoking causes a multitude of metabolic changes that are poorly understood. We quantified and analyzed 198 metabolites in 283 serum samples from the human cohort KORA (Cooperative Health Research in the Region of Augsburg). Multivariate analysis of metabolic profiles revealed that the group of smokers could be clearly differentiated from the groups of former smokers and non-smokers. Moreover, 23 lipid metabolites were identified as nicotine-dependent biomarkers. The levels of these biomarkers are all up-regulated in smokers compared to those in former and non-smokers, except for three acyl-alkyl-phosphatidylcholines (e.g. plasmalogens). Consistently significant results were further found for the ratios of plasmalogens to diacyl-phosphatidylcolines, which are reduced in smokers and regulated by the enzyme alkylglycerone phosphate synthase (alkyl-DHAP) in both ether lipid and glycerophospholipid pathways. Notably, our metabolite profiles are consistent with the strong down-regulation of the gene for alkyl-DHAP (AGPS) in smokers that has been found in a study analyzing gene expression in human lung tissues. Our data suggest that smoking is associated with plasmalogen-deficiency disorders, caused by reduced or lack of activity of the peroxisomal enzyme alkyl-DHAP. Our findings provide new insight into the pathophysiology of smoking addiction. Activation of the enzyme alkyl-DHAP by small molecules may provide novel routes for therapy

    Women Have Higher Protein Content of β-Oxidation Enzymes in Skeletal Muscle than Men

    Get PDF
    It is well recognized that compared with men, women have better ultra-endurance capacity, oxidize more fat during endurance exercise, and are more resistant to fat oxidation defects i.e. diet-induced insulin resistance. Several groups have shown that the mRNA and protein transcribed and translated from genes related to transport of fatty acids into the muscle are greater in women than men; however, the mechanism(s) for the observed sex differences in fat oxidation remains to be determined. Muscle biopsies from the vastus lateralis were obtained from moderately active men (N = 12) and women (N = 11) at rest to examine mRNA and protein content of genes involved in lipid oxidation. Our results show that women have significantly higher protein content for tri-functional protein alpha (TFPα), very long chain acyl-CoA dehydrogenase (VLCAD), and medium chain acyl-CoA dehydrogenase (MCAD) (P<0.05). There was no significant sex difference in the expression of short-chain hydroxyacyl-CoA dehydrogenase (SCHAD), or peroxisome proliferator activated receptor alpha (PPARα), or PPARγ, genes potentially involved in the transcriptional regulation of lipid metabolism. In conclusion, women have more protein content of the major enzymes involved in long and medium chain fatty acid oxidation which could account for the observed differences in fat oxidation during exercise
    corecore