9 research outputs found

    Metabolomics Reveals the Molecular Mechanisms of Copper Induced Cucumber Leaf (<i>Cucumis sativus</i>) Senescence

    No full text
    Excess copper may disturb plant photosynthesis and induce leaf senescence. The underlying toxicity mechanism is not well understood. Here, 3-week-old cucumber plants were foliar exposed to different copper concentrations (10, 100, and 500 mg/L) for a final dose of 0.21, 2.1, and 10 mg/plant, using CuSO<sub>4</sub> as the Cu ion source for 7 days, three times per day. Metabolomics quantified 149 primary and 79 secondary metabolites. A number of intermediates of the tricarboxylic acid (TCA) cycle were significantly down-regulated 1.4–2.4 fold, indicating a perturbed carbohydrate metabolism. Ascorbate and aldarate metabolism and shikimate-phenylpropanoid biosynthesis (antioxidant and defense related pathways) were perturbed by excess copper. These metabolic responses occur even at the lowest copper dose considered although no phenotype changes were observed at this dose. High copper dose resulted in a 2-fold increase in phytol, a degradation product of chlorophyll. Polyphenol metabolomics revealed that some flavonoids were down-regulated, while the nonflavonoid 4-hydroxycinnamic acid and <i>trans</i>-2-hydroxycinnamic acid were significantly up-regulated 4- and 26-fold compared to the control. This study enhances current understanding of copper toxicity to plants and demonstrates that metabolomics profiling provides a more comprehensive view of plant responses to stressors, which can be applied to other plant species and contaminants

    An Isoprene Lipid-Binding Protein Promotes Eukaryotic Coenzyme Q Biosynthesis

    No full text
    The biosynthesis of coenzyme Q presents a paradigm for how cells surmount hydrophobic barriers in lipid biology. In eukaryotes, CoQ precursors-among nature's most hydrophobic molecules-must somehow be presented to a series of enzymes peripherally associated with the mitochondrial inner membrane. Here, we reveal that this process relies on custom lipid-binding properties of COQ9. We show that COQ9 repurposes the bacterial TetR fold to bind aromatic isoprenes with high specificity, including CoQ intermediates that likely reside entirely within the bilayer. We reveal a process by which COQ9 associates with cardiolipin-rich membranes and warps the membrane surface to access this cargo. Finally, we identify a molecular interface between COQ9 and the hydroxylase COQ7, motivating a model whereby COQ9 presents intermediates directly to CoQ enzymes. Overall, our results provide a mechanism for how a lipid-binding protein might access, select, and deliver specific cargo from a membrane to promote biosynthesis

    Functional Microbiomics Reveals Alterations of the Gut Microbiome and Host Co‐Metabolism in Patients With Alcoholic Hepatitis

    No full text
    Alcohol-related liver disease is a major public health burden, and the gut microbiota is an important contributor to disease pathogenesis. The aim of the present study is to characterize functional alterations of the gut microbiota and test their performance for short-term mortality prediction in patients with alcoholic hepatitis. We integrated shotgun metagenomics with untargeted metabolomics to investigate functional alterations of the gut microbiota and host co-metabolism in a multicenter cohort of patients with alcoholic hepatitis. Profound changes were found in the gut microbial composition, functional metagenome, serum, and fecal metabolomes in patients with alcoholic hepatitis compared with nonalcoholic controls. We demonstrate that in comparison with single omics alone, the performance to predict 30-day mortality was improved when combining microbial pathways with respective serum metabolites in patients with alcoholic hepatitis. The area under the receiver operating curve was higher than 0.85 for the tryptophan, isoleucine, and methionine pathways as predictors for 30-day mortality, but achieved 0.989 for using the urea cycle pathway in combination with serum urea, with a bias-corrected prediction error of 0.083 when using leave-one-out cross validation. Conclusion: Our study reveals changes in key microbial metabolic pathways associated with disease severity that predict short-term mortality in our cohort of patients with alcoholic hepatitis

    Functional Microbiomics Reveals Alterations of the Gut Microbiome and Host Co‐Metabolism in Patients With Alcoholic Hepatitis

    No full text
    Alcohol-related liver disease is a major public health burden, and the gut microbiota is an important contributor to disease pathogenesis. The aim of the present study is to characterize functional alterations of the gut microbiota and test their performance for short-term mortality prediction in patients with alcoholic hepatitis. We integrated shotgun metagenomics with untargeted metabolomics to investigate functional alterations of the gut microbiota and host co-metabolism in a multicenter cohort of patients with alcoholic hepatitis. Profound changes were found in the gut microbial composition, functional metagenome, serum, and fecal metabolomes in patients with alcoholic hepatitis compared with nonalcoholic controls. We demonstrate that in comparison with single omics alone, the performance to predict 30-day mortality was improved when combining microbial pathways with respective serum metabolites in patients with alcoholic hepatitis. The area under the receiver operating curve was higher than 0.85 for the tryptophan, isoleucine, and methionine pathways as predictors for 30-day mortality, but achieved 0.989 for using the urea cycle pathway in combination with serum urea, with a bias-corrected prediction error of 0.083 when using leave-one-out cross validation. Conclusion: Our study reveals changes in key microbial metabolic pathways associated with disease severity that predict short-term mortality in our cohort of patients with alcoholic hepatitis

    Metabolite-related dietary patterns and the development of islet autoimmunity

    No full text
    corecore