9 research outputs found

    Optimisation of biomass, exopolysaccharide and intracellular polysaccharide production from the mycelium of an identified Ganoderma lucidum strain QRS 5120 using response surface methodology

    Get PDF
    Wild-cultivated medicinal mushroom Ganoderma lucidum was morphologically identified and sequenced using phylogenetic software. In submerged-liquid fermentation (SLF), biomass, exopolysaccharide (EPS) and intracellular polysaccharide (IPS) production of the identified G. lucidum was optimised based on initial pH, starting glucose concentration and agitation rate parameters using response surface methodology (RSM). Molecularly, the G. lucidum strain QRS 5120 generated 637 base pairs, which was commensurate with related Ganoderma species. In RSM, by applying central composite design (CCD), a polynomial model was fitted to the experimental data and was found to be significant in all parameters investigated. The strongest effect (p lt 0.0001) was observed for initial pH for biomass, EPS and IPS production, while agitation showed a significant value (p lt 0.005) for biomass. By applying the optimized conditions, the model was validated and generated 5.12 g/L of biomass (initial pH 4.01, 32.09 g/L of glucose and 102 rpm), 2.49 g/L EPS (initial pH 4, 24.25 g/L of glucose and 110 rpm) and 1.52 g/L of IPS (and initial pH 4, 40.43 g/L of glucose, 103 rpm) in 500 mL shake flask fermentation. The optimized parameters can be upscaled for efficient biomass, EPS and IPS production using G. lucidum

    Performance of wild-serbian ganoderma lucidum mycelium in treating synthetic sewage loading using batch bioreactor

    Get PDF
    The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia–nitrogen (NH3–N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3–N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3–N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3–N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system

    Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for γ-aminobutyric acid (GABA) production

    Get PDF
    In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P < 0.05) among themselves. Based on the A. oryzae strains, highest GABA concentration was obtained from NSK (194 mg/L) followed by NSZ (63 mg/L), NSJ (51.53 mg/L) and NST (31.66 mg/L). Therefore, A. oryzae NSK was characterized and the sequence was found to be similar to A. oryzae and A. flavus with 99 % similarity. The evolutionary distance (K nuc) between sequences of identical fungal species was calculated and a phylogenetic tree prepared from the K nuc data showed that the isolate belonged to the A. oryzae species. This finding may allow the development of GABA-rich ingredients using A. oryzae NSK as a starter culture for soy sauce production
    corecore