128 research outputs found
Understanding and Predicting Delay in Reciprocal Relations
Reciprocity in directed networks points to user's willingness to return
favors in building mutual interactions. High reciprocity has been widely
observed in many directed social media networks such as following relations in
Twitter and Tumblr. Therefore, reciprocal relations between users are often
regarded as a basic mechanism to create stable social ties and play a crucial
role in the formation and evolution of networks. Each reciprocity relation is
formed by two parasocial links in a back-and-forth manner with a time delay.
Hence, understanding the delay can help us gain better insights into the
underlying mechanisms of network dynamics. Meanwhile, the accurate prediction
of delay has practical implications in advancing a variety of real-world
applications such as friend recommendation and marketing campaign. For example,
by knowing when will users follow back, service providers can focus on the
users with a potential long reciprocal delay for effective targeted marketing.
This paper presents the initial investigation of the time delay in reciprocal
relations. Our study is based on a large-scale directed network from Tumblr
that consists of 62.8 million users and 3.1 billion user following relations
with a timespan of multiple years (from 31 Oct 2007 to 24 Jul 2013). We reveal
a number of interesting patterns about the delay that motivate the development
of a principled learning model to predict the delay in reciprocal relations.
Experimental results on the above mentioned dynamic networks corroborate the
effectiveness of the proposed delay prediction model.Comment: 10 page
Natural Language Reinforcement Learning
Reinforcement Learning (RL) has shown remarkable abilities in learning
policies for decision-making tasks. However, RL is often hindered by issues
such as low sample efficiency, lack of interpretability, and sparse supervision
signals. To tackle these limitations, we take inspiration from the human
learning process and introduce Natural Language Reinforcement Learning (NLRL),
which innovatively combines RL principles with natural language representation.
Specifically, NLRL redefines RL concepts like task objectives, policy, value
function, Bellman equation, and policy iteration in natural language space. We
present how NLRL can be practically implemented with the latest advancements in
large language models (LLMs) like GPT-4. Initial experiments over tabular MDPs
demonstrate the effectiveness, efficiency, and also interpretability of the
NLRL framework.Comment: Work in Progres
Crystal structure of the N‐terminal region of human Ash2L shows a winged‐helix motif involved in DNA binding
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102216/1/embr2011101-sup-0001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102216/2/embr2011101.reviewer_comments.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102216/3/embr2011101.pd
Genome sequences reveal global dispersal routes and suggest convergent genetic adaptations in seahorse evolution
Seahorses have a circum-global distribution in tropical to temperate coastal waters. Yet, seahorses show many adaptations for a sedentary, cryptic lifestyle: they require specific habitats, such as seagrass, kelp or coral reefs, lack pelvic and caudal fins, and give birth to directly developed offspring without pronounced pelagic larval stage, rendering long-range dispersal by conventional means inefficient. Here we investigate seahorses’ worldwide dispersal and biogeographic patterns based on a de novo genome assembly of Hippocampus erectus as well as 358 re-sequenced genomes from 21 species. Seahorses evolved in the late Oligocene and subsequent circum-global colonization routes are identified and linked to changing dynamics in ocean currents and paleo-temporal seaway openings. Furthermore, the genetic basis of the recurring “bony spines” adaptive phenotype is linked to independent substitutions in a key developmental gene. Analyses thus suggest that rafting via ocean currents compensates for poor dispersal and rapid adaptation facilitates colonizing new habitats.Fil: Chunyan, Li. Southern Marine Science and Engineering Guangdong Laboratory; China. Pilot National Laboratory for Marine Science and Technology; China. Chinese Academy of Sciences; República de ChinaFil: Olave, Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina. University of Konstanz; AlemaniaFil: Hou, Yali. Chinese Academy of Sciences; República de ChinaFil: Geng, Qi. Chinese Academy of Sciences; República de China. Southern Marine Science and Engineering Guangdong
Laboratory; ChinaFil: Schneider, Ralf. University Of Konstanz; Alemania. Helmholtz Centre for Ocean Research Kie; AlemaniaFil: Zeixa, Gao. Huazhong Agricultural University; ChinaFil: Xiaolong, Tu. Allwegene Technologies ; ChinaFil: Xin, Wang. Chinese Academy of Sciences; República de ChinaFil: Furong, Qi. China National Center for Bioinformation; China. University of Chinese Academy of Sciences; ChinaFil: Nater, Alexander. University of Konstanz; AlemaniaFil: Kautt, Andreas F.. University of Konstanz; Alemania. Harvard University; Estados UnidosFil: Wan, Shiming. Chinese Academy of Sciences; República de ChinaFil: Yanhong, Zhang. Chinese Academy of Sciences; República de ChinaFil: Yali, Liu. Chinese Academy of Sciences; República de ChinaFil: Huixian, Zhang. Chinese Academy of Sciences; República de ChinaFil: Bo, Zhang. Chinese Academy of Sciences; República de ChinaFil: Hao, Zhang. Chinese Academy of Sciences; República de ChinaFil: Meng, Qu ,. Chinese Academy of Sciences; República de ChinaFil: Shuaishuai, Liu. Chinese Academy of Sciences; República de ChinaFil: Zeyu, Chen. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; ChinaFil: Zhong, Jia. Chinese Academy of Sciences; República de ChinaFil: Zhang, He. BGI-Shenzhen; ChinaFil: Meng, Lingfeng. BGI-Shenzhen; ChinaFil: Wang, Kai. Ludong University; ChinaFil: Yin, Jianping. Chinese Academy of Sciences; República de ChinaFil: Huang, Liangmin. Chinese Academy of Sciences; República de China. University of Chinese Academy of Sciences; ChinaFil: Venkatesh, Byrappa. Institute of Molecular and Cell Biology; SingapurFil: Meyer, Axel. University of Konstanz; AlemaniaFil: Lu, Xuemei. Chinese Academy of Sciences; República de ChinaFil: Lin, Qiang. Chinese Academy of Sciences; República de China. Southern Marine Science and Engineering Guangdong
Laboratory; China. Pilot National Laboratory for Marine Science and Technology; China. University of Chinese Academy of Sciences; Chin
Antimicrobial photodynamic inactivation as an alternative approach to inhibit the growth of Cronobacter sakazakii by fine-tuning the activity of CpxRA two-component system
Cronobacter sakazakii is an opportunistic foodborne pathogen primarily found in powdered infant formula (PIF). To date, it remains challenging to control the growth of this ubiquitous bacterium. Herein, antimicrobial photodynamic inactivation (aPDI) was first employed to inactivate C. sakazakii. Through 460 nm light irradiation coupled with hypocrellin B, the survival rate of C. sakazakii was diminished by 3~4 log. The photokilling effect was mediated by the attenuated membrane integrity, as evidenced by PI staining. Besides, scanning electron microscopy showed the deformed and aggregated cell cluster, and intracellular ROS was augmented by 2~3 folds when light doses increase. In addition to planktonic cells, the biofilm formation of C. sakazakii was also affected, showing an OD590nm decline from 0.85 to 0.25. In terms of molecular aspects, a two-component system called CpxRA, along with their target genes, was deregulated during illumination. Using the knock-out strain of ΔCpxA, the bacterial viability was reduced by 2 log under aPDI, a wider gap than the wildtype strain. Based on the promoted expression of CpxR and OmpC, aPDI is likely to play its part through attenuating the function of CpxRA-OmpC pathway. Finally, the aPDI system was applied to PIF, and C. sakazakii was inactivated under various desiccated or heated storage conditions. Collectively, aPDI serves as an alternative approach to decontaminate C. sakazakii, providing a new strategy to reduce the health risks caused by this prevalent foodborne pathogen
OSlms: A Web Server to Evaluate the Prognostic Value of Genes in Leiomyosarcoma
The availability of transcriptome data and clinical annotation offers the opportunity to identify prognosis biomarkers in cancer. However, efficient online prognosis analysis tools are still lacking. Herein, we developed a user-friendly web server, namely Online consensus Survival analysis of leiomyosarcoma (OSlms), to centralize published gene expression data and clinical datasets of leiomyosarcoma (LMS) patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). OSlms comprises of a total of 268 samples from three independent datasets, and employs the Kaplan Meier survival plot with hazard ratio (HR) and log rank test to estimate the prognostic potency of genes of interests for LMS patients. Using OSlms, clinicians and basic researchers could determine the prognostic significance of genes of interests and get opportunities to identify novel potential important molecules for LMS. OSlms is free and publicly accessible at http://bioinfo.henu.edu.cn/LMS/LMSList.jsp
Acute Ethanol Inhibition of γ Oscillations Is Mediated by Akt and GSK3β
Hippocampal network oscillations at gamma band frequency (γ, 30–80 Hz) are closely associated with higher brain functions such as learning and memory. Acute ethanol exposure at intoxicating concentrations (≥50 mM) impairs cognitive function. This study aimed to determine the effects and the mechanisms of acute ethanol exposure on γ oscillations in an in vitro model. Ethanol (25–100 mM) suppressed kainate-induced γ oscillations in CA3 area of the rat hippocampal slices, in a concentration-dependent, reversible manner. The ethanol-induced suppression was reduced by the D1R antagonist SCH23390 or the PKA inhibitor H89, was prevented by the Akt inhibitor triciribine or the GSk3β inhibitor SB415286, was enhanced by the NMDA receptor antagonist D-AP5, but was not affected by the MAPK inhibitor U0126 or PI3K inhibitor wortmanin. Our results indicate that the intracellular kinases Akt and GSk3β play a critical role in the ethanol-induced suppression of γ oscillations and reveal new cellular pathways involved in the ethanol-induced cognitive impairment
- …