2,049 research outputs found

    Assessing the genetic diversity of cultivars and wild soybeans using SSR markers

    Get PDF
    Increasing the diversity of the soybean germplasm base could introduce new genes affecting agronomic traits. In this study, we demonstrated the differences of genetic diversity level among 40 soybean accessions of cultivars, landraces and wild soybeans collected in the Shanxi Agricultural University using 40 simple sequence repeat (SSR) primer pairs. The structure based on model result showed that the cultivars, landraces and wild soybeans could be divided into three groups. Comparison of three types of soybeans showed that wild soybeans and landraces showed higher genetic diversity level than cultivars. The average genetic diversity index of wild soybeans and landraces was 1.5421 and 1.2864, while that of cultivars was 1.0981. A total number of alleles in wild soybeans were 224, while those in cultivars and landraces were 182 and 148, respectively, which were 81.25 and 66.07% of wild soybeans. The higher genetic distance (0.6414) and genetic differentiation (0.1200) and the lower genetic identity (0.5265) and gene flow (1.8338) between wild soybeans and cultivars were found. The proportion of low frequency alleles (allele frequency < 0.15) was the highest in wild soybeans (57.5%), followed by landraces (42%) and cultivars (29.8%). The UPGMA results also showed that wide soybean were of more abundant genetic diversity than cultivars. These results indicated that wild soybeans and landraces possessed greater allelic diversity than cultivars and might contain alleles not present in the cultivars which can strengthen further conservation and utilization.Key words: Soybean, simple sequence repeat, genetic diversity

    A role of ygfZ in the Escherichia coli response to plumbagin challenge

    Get PDF
    Plumbagin is found in many herbal plants and inhibits the growth of various bacteria. Escherichia coli strains are relatively resistant to this drug. The mechanism of resistance is not clear. Previous findings showed that plumbagin treatment triggered up-regulation of many genes in E. coli including ahpC, mdaB, nfnB, nfo, sodA, yggX and ygfZ. By analyzing minimal inhibition concentration and inhibition zones of plumbagin in various gene-disruption mutants, ygfZ and sodA were found critical for the bacteria to resist plumbagin toxicity. We also found that the roles of YgfZ and SodA in detoxifying plumbagin are independent of each other. This is because of the fact that ectopically expressed SodA reduced the superoxide stress but not restore the resistance of bacteria when encountering plumbagin at the absence of ygfZ. On the other hand, an ectopically expressed YgfZ was unable to complement and failed to rescue the plumbagin resistance when sodA was perturbed. Furthermore, mutagenesis analysis showed that residue Cys228 within YgfZ fingerprint region was critical for the resistance of E. coli to plumbagin. By solvent extraction and HPLC analysis to follow the fate of the chemical, it was found that plumbagin vanished apparently from the culture of YgfZ-expressing E. coli. A less toxic form, methylated plumbagin, which may represent one of the YgfZ-dependent metabolites, was found in the culture supernatant of the wild type E. coli but not in the ΔygfZ mutant. Our results showed that the presence of ygfZ is not only critical for the E coli resistance to plumbagin but also facilitates the plumbagin degradation

    The Validity of MotionSense HRV in Estimating Sedentary Behavior and Physical Activity under Free-Living and Simulated Activity Settings.

    Get PDF
    MotionSense HRV is a wrist-worn accelerometery-based sensor that is paired with a smartphone and is thus capable of measuring the intensity, duration, and frequency of physical activity (PA). However, little information is available on the validity of the MotionSense HRV. Therefore, the purpose of this study was to assess the concurrent validity of the MotionSense HRV in estimating sedentary behavior (SED) and PA. A total of 20 healthy adults (age: 32.5 ± 15.1 years) wore the MotionSense HRV and ActiGraph GT9X accelerometer (GT9X) on their non-dominant wrist for seven consecutive days during free-living conditions. Raw acceleration data from the devices were summarized into average time (min/day) spent in SED and moderate-to-vigorous PA (MVPA). Additionally, using the Cosemed K5 indirect calorimetry system (K5) as a criterion measure, the validity of the MotionSense HRV was examined in simulated free-living conditions. Pearson correlations, mean absolute percent errors (MAPE), Bland-Altman (BA) plots, and equivalence tests were used to examine the validity of the MotionSense HRV against criterion measures. The correlations between the MotionSense HRV and GT9X were high and the MAPE were low for both the SED (r = 0.99, MAPE = 2.4%) and MVPA (r = 0.97, MAPE = 9.1%) estimates under free-living conditions. BA plots illustrated that there was no systematic bias between the MotionSense HRV and criterion measures. The estimates of SED and MVPA from the MotionSense HRV were significantly equivalent to those from the GT9X; the equivalence zones were set at 16.5% for SED and 29% for MVPA. The estimates of SED and PA from the MotionSense HRV were less comparable when compared with those from the K5. The MotionSense HRV yielded comparable estimates for SED and PA when compared with the GT9X accelerometer under free-living conditions. We confirmed the promising application of the MotionSense HRV for monitoring PA patterns for practical and research purposes

    Spontaneous subperiosteal orbital haemorrhage (SSOH): an unusual complication of acute coronary syndrome treatment

    Get PDF
    Acute coronary syndrome is a medical emergency with a high mortality and morbidity. Reperfusion therapy is widely used in its management. Ocular complications following reperfusion therapy is rare. A 51-year-old man treated with streptokinase, antithrombotic and dual antiplatelet therapy, developed mild proptosis following treatment. After four days, there was sudden worsening of the proptosis associated with orbital compartmental syndrome (OCS). The CT scan of the orbit showed a large spontaneous subperiosteal orbital hemorrhage (SSOH) occupying half of the left orbit. Despite performing an urgent lateral canthotomy and inferior cantholysis, the patient developed irreversible vision loss due to compressive optic neuropathy. While a few cases of mild SSOH have been reported in the medical literature, this is the first documented case of secondary bleed in SSOH. Early recognition and intervention by the treating physician, is crucial in preventing blindness

    Spectra of Free Diquark in the Bethe-Salpeter Approach

    Full text link
    In this work, we employ the Bethe-Salpeter (B-S) equation to investigate the spectra of free diquarks and their B-S wave functions. We find that the B-S approach can be consistently applied to study the diqaurks with two heavy quarks or one heavy and one light quarks, but for two light-quark systems, the results are not reliable. There are a few free parameters in the whole scenario which can only be fixed phenomenologically. Thus, to determine them, one has to study baryons which are composed of quarks and diquarks.Comment: 16 pages, no figure

    Novel Nuclear Partnering Role of EPS8 With FOXM1 in Regulating Cell Proliferation

    Get PDF
    One hallmark of cancer cells is sustaining proliferative signaling that leads to uncontrolled cell proliferation. Both the Forkhead box (FOX) M1 transcription factor and the Epidermal Growth Factor (EGF) receptor Pathway Substrate 8 (EPS8) are known to be activated by mitogenic signaling and their levels upregulated in cancer. Well-known to regulate Rac-mediated actin remodeling at the cell cortex, EPS8 carries a nuclear localization signal but its possible nuclear role remains unclear. Here, we demonstrated interaction of FOXM1 with EPS8 in yeast two-hybrid and immunoprecipitation assays. Immunostaining revealed co-localization of the two proteins during G2/M phase of the cell cycle. EPS8 became nuclear localized when CRM1/Exportin 1-dependent nuclear export was inhibited by Leptomycin B, and a functional nuclear export signal could be identified within EPS8 using EGFP-tagging and site-directed mutagenesis. Downregulation of EPS8 using shRNAs suppressed expression of FOXM1 and the FOXM1-target CCNB1, and slowed down G2/M transition in cervical cancer cells. Chromatin immunoprecipitation analysis indicated recruitment of EPS8 to the CCNB1 and CDC25B promoters. Taken together, our findings support a novel partnering role of EPS8 with FOXM1 in the regulation of cancer cell proliferation and provides interesting insight into future design of therapeutic strategy to inhibit cancer cell proliferation

    The relevance of larval biology on spatiotemporal patterns of pathogen connectivity among open-marine salmon farms

    Get PDF
    Warming waters are changing marine pathogen dispersal patterns and infectivity worldwide. Coupled biological-physical modelling has been used in many systems to determine the connectivity of meta-populations via infectious disease particles. Here we model the connectivity of sea lice larvae (Lepeophtheirus salmonis) among salmon farms in the Broughton Archipelago, British Columbia, Canada, using a coupled biological-physical model. The physical model simulated pathogen dispersal, while the biological component influenced the survival and developmental rates of the sea lice. Model results predicted high temporal variability in connectivity strength among farms; an emergent effect from the interacting parts of the simulation (dispersion vs. survival/development). Drivers of temporal variability were disentangled using generalized additive modeling, which revealed the variability was most strongly impacted by the spring freshet, which can act as a natural aid for sea lice control in the Broughton Archipelago. Our results suggest that farm management strategies can benefit by taking into account short-term spikes in regional pathogen connectivity among farms. Additionally, future scenarios of a warming climate with reduced snowpack can make sea lice control more challenging

    Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection

    Get PDF
    ZnO nanowires were produced using an electrospinning method and used in gas sensors for the detection of ethanol at 220 °C. This electrospinning technique allows the direct placement of ZnO nanowires during their synthesis to bridge the sensor electrodes. An excellent sensitivity of nearly 90% was obtained at a low ethanol concentration of 10 ppm, and the rest obtained at higher ethanol concentrations, up to 600 ppm, all equal to or greater than 90%
    corecore