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Abstract 

Warming waters are changing marine pathogen dispersal patterns and infectivity worldwide. 

Coupled biological-physical modelling has been used in many systems to determine the 

connectivity of vulnerable meta-populations via infectious disease particles. Here we model the 

connectivity of sea lice larvae (Lepeophtheirus salmonis) among salmon farms in the Broughton 

Archipelago, British Columbia, Canada, using a coupled biological-physical model. The physical 

model simulated pathogen dispersal, while the biological component influenced the survival and 

developmental rates of the sea lice. Model results predicted high temporal variability in 

connectivity strength among farms; an emergent effect from the interacting parts of the simulation 

(dispersion vs. survival/development). Drivers of temporal variability were disentangled using 

generalized additive modeling, which revealed the variability was most strongly impacted by the 

spring freshet event, which can act as a natural aid for sea lice control in the Broughton 

Archipelago. Our results suggest that farm management strategies can benefit by taking into 

account short-term spikes in regional pathogen connectivity among farms. Additionally, future 

scenarios of a warming climate with reduced snowpack will likely make sea lice control more 

challenging. 

 

Introduction 

Transmission of water-borne pathogens (parasites, viruses, bacteria) in marine environments 

depends on factors influencing the movement and viability of the pathogen. Passive dispersal 

depends on local hydrodynamics, as dictated by winds, salinity gradients arising mainly from 

freshwater discharges, air-sea heat exchanges, and/or tidal forcing (Foreman et al. 2009). Some 

pathogens, particularly parasites with a free-living larval stage, possess some movement 

capabilities. For example, several species of parasitic nematodes (a phylum of generally parasitic 



round worms) have a free swimming larval stage and several intermediate hosts before ultimately 

infecting marine mammals or, in some cases, humans (Lunneryd et al. 2015). Sea lice, an 

ectoparasite of commercially and ecologically important fish species (Jones et al. 2006; Costello 

2006), also possess a free-swimming larval stage, that influences their horizontal dispersal abilities 

(North et al. 2008; Johnsen et al. 2016); however, they are still largely dependent on local 

hydrodynamics for large scale (i.e. on the scale of kilometers) dispersal.  

Additionally, the ability of water-borne pathogens to infect or infest a host can be influenced by 

the physical properties of the water they encounter, which can impact the growth, survival, and/or 

maturation of the pathogen (Brooker et al. 2018). For example, viruses will eventually degrade 

under ultraviolet B exposure (Jacquet and Bratbak 2003);  bacterial or fungal pathogens can 

become spores in unfavourable abiotic conditions, to become infectious later in conditions more 

suited to their survival (Lennon and Jones 2011); temperature can impact bacterial replication rates 

and temperature stress can make hosts more susceptible to bacterial infection (Holt et al. 1989), 

and parasitic larvae development and survival rates are dependent on the water salinity and 

temperature they encounter  (Groner et al. 2016a; Samsing et al. 2016). In addition, in order for a 

potential host to be vulnerable to contracting a water-borne pathogen, the host must come into 

contact with a sufficient dose of viable pathogen (Schmid-Hempel and Frank 2007). However, the 

role that any of these processes involved in pathogen dispersion and viability may play in disease 

transmission is difficult to determine.  

Previous studies on water-borne disease transmission have frequently neglected important aspects 

related to the multifactorial nature of pathogen dispersion. For example, they often lack the 

circulation component, using laboratory studies to isolate how individual components contribute to 

a successful infection of a host independent of specific regional conditions. Population 



scale/epidemiological studies often use sea-way distance as a proxy for circulation (Aldrin et al. 

2013; Rees et al. 2015). Studies that have explicitly modeled regional circulation (Stucchi et al. 

2011; Adams et al. 2012; Asplin et al. 2014; Kough et al. 2015; Johnsen et al. 2016; Kragesteen et 

al. 2017; Salama et al. 2017; Samsing et al. 2017) typically do not elucidate the contributions of 

individual drivers to infectious pressure experienced by potential hosts. 

The difficulty in determining epidemiologically important drivers of marine pathogen transmission 

in real aquatic populations experimentally or observationally has led to the increasingly common 

usage of computer simulations (Stucchi et al. 2011; Adams et al. 2012; Asplin et al. 2014; Kough 

et al. 2015; Johnsen et al. 2016; Kragesteen et al. 2017; Salama et al. 2017; Samsing et al. 2017; 

Arnold et al. 2017; Skarðhamar et al. 2018). These marine pathogen epidemiological simulations 

often include: a physical circulation model, a simulated release of particles to be carried by/move 

in the circulation (known as a particle tracking model), and a biological model of the lifecycle of 

the disease assigned to the simulated particles. When all three models are simulated in sequence, 

this can be referred to as coupled bio-physical modelling. Here, we apply a coupled bio-physical 

model to the salmon farm, sea-lice system, with the ultimate aim of quantitatively determining 

which physical drivers lead to farms experiencing increased infective dose from their neighbouring 

farms.  

Sea lice are a naturally occurring ectoparasite that affect salmon farming productivity and the 

health of wild salmonids (Revie et al. 2003; Jansen et al. 2012; Kristoffersen et al. 2014; Rees et al. 

2015). In the northern hemisphere, Lepeophtheirus salmonis is the species of greatest concern 

(Costello 2006), though other species, such as the more generalists Caligus clemensi can also 

cause infestations. Sea lice attach to the scales of salmonids, and feed on the scales, mucus, and 

blood of their hosts (Costello 2006). In adult fish, infestations can result in reduced feeding 



behaviours (and thus growth), as well as make them susceptible to secondary infections (Mustafa 

et al. 2000; Wagner et al. 2008). In juvenile fish, infestations can result in death due to 

osmoregulatory failure (Brauner et al. 2012; Patanasatienkul et al. 2013), though the levels 

required to consider a juvenile to be ‘at risk’ have rarely been reported over the past decade (C.W. 

Revie, pers comm). While the exact threshold size where juveniles are susceptible varies by 

species, generally they are most susceptible when smaller than 1 gram (Jones and Hargreaves 

2009).  

 

L. salmonis have several free-living larval stages after hatching, which can widely disperse, and 

are usually located in the upper layer of the water column (less than five m of depth) (Johnsen et al. 

2014). They do not become infectious and able to attach to a host until molting from nauplii into 

copepods (Boxaspen 2006). The egg production, maturation rate, and survivorship of sea lice are 

all dependent on the environmental conditions the louse encounters (Stucchi et al. 2011; Groner et 

al. 2016a; Samsing et al. 2016). For example, warmer temperatures result in shorter maturation 

time from larvae to maturity. Water below salinity thresholds results in death of the larvae or 

reduced ability to settle on a host fish. What the threshold precisely is has not yet been agreed on 

in the literature and likely varies between larval stages. However, Groner et al.’s 2016 meta-

analysis on salinity’s impact on sea lice survival found a general trend of decreasing survival with 

decreasing salinity, with 20 psu resulting in larval death (Groner et al. 2016a). The high fecundity 

and wide larval dispersal capabilities of the sea lice life cycle benefit their overall survival and 

success (Brooker et al. 2018). 

 

A detailed understanding of sea lice dispersion and viability, and pathogens in general, should 

inform aquaculture disease management practices (Groner et al. 2016b). For example, farmed 



salmon are subject to viruses, bacteria, and parasites requiring expensive treatments or large scale 

culls (Murray and Peeler 2005). Treatments have economic and environmental costs associated 

with their use to control disease outbreaks, and resistance to such treatments is a growing concern 

worldwide for nearly all farmed salmon pathogens (Lees et al. 2008; Grøntvedt et al. 2014; Aaen 

et al. 2015; McEwan et al. 2015). Farm-to-farm transmission of pathogens is common in some 

areas, where connected clusters of farms must be treated together, or else re-infection is likely. 

This has been most well studied in European farming areas (i.e. Scotland and Norway) (Adams et 

al. 2012, 2015; Stene et al. 2014; Murray and Gubbins 2016; Samsing et al. 2017). Additionally, 

there is concern over the potential for farms to amplify and introduce diseases at higher densities 

to wild salmonid populations (Dill 2011; Kristoffersen et al. 2018; Nekouei et al. 2018). 

 

Understanding connections among farms via pathogen transmission, and which environmental 

factors contribute to periods of larger infective pressure can help industry coordinate regional 

disease interventions as epidemiologically sensible management areas (e.g. groups of farms that 

need to be treated as a single unit to minimize outbreak potential) (Aldrin et al. 2013; Adams et al. 

2015; Samsing et al. 2017). Selecting the correct spatial and temporal resolution for management 

of treatments, stocking/fallowing timing (Adams et al. 2016), and planning of future site locations 

is crucial for continued aquaculture sustainability, for quality and quantity of animal production, 

and for environmental sustainability to reduce the impact of pathogen spill-over to neighbouring 

wild fish populations (Krkosek et al. 2013) .  

In this study we use a coupled bio-physical model to disentangle factors affecting sea lice 

dispersion and viability in a salmon farming coastal region that is also home to wild salmon 

populations: the Broughton Archipelago (BA) of British Columbia (BC), Canada. We investigated 



the difference in the strength of the connectivity among farms via infectious sea lice larvae under 

four different simulations, with increasing complexity in the biological model. 

 

The population level patterns were then explored using generalized additive modelling (GAM) to 

elucidate the drivers of temporal variability in the infective dose farms exert on each other. This 

analysis also assessed whether drivers of temporal variability in the connectivity of farms varied 

spatially.  

 

Methods 

Study site and simulation period 

The model domain is the BA, BC, Canada (Fig. 1); a group of islands off the northeastern tip of 

Vancouver Island.  It is the site of a currently active salmon farming industry, as well as an 

important part of juvenile wild salmonid migratory routes for Pink (O. gorbuscha), Coho (O. 

kisutch), and Chum salmon (O. keta), and to a much lesser extent, Sockeye (Oncorhynchus nerka) 

and Chinook (O. tshawytscha). It is a highly complex and fjordic area, with currents driven by 

tides, winds, and freshwater runoff from rivers whose discharges generally peak in the spring 

(Foreman et al. 2015) . Channels are as deep as 600 m, though most range between 50-300 m 

(Foreman et al. 2006), and sea surface temperatures have a narrow range, from an average of 7.1C 

in January to 10.9 in August (Rogers et al. 2013). 

 

The underlying physical model was constructed using the Finite Volume Community Ocean 

Model (FVCOM ) framework (Chen et al. 2003), began on March 1
st
, and was allowed a ten-day 

“ramp up” period for the currents to stabilize. The bio-physical simulation period therefore began 



March 11
th

, and ran to July 31
st
, 2009. The March-July time frame was chosen because this is the 

period during which the wild juvenile salmon will typically out-migrate from the rivers in which 

they were spawned to the open ocean.  

 

The bio-physical model 

The underlying circulation model is an update of that described in Foreman et al. (2009) to include 

air-sea heat exchanges. These exchanges have four components: sensible heat flux (differences in 

temperature between the air and water), latent heat flux (heat arising in changes between states, 

such as evaporation), short wave radiations (e.g. solar, some of which may be absorbed by clouds 

as well as ground and water), and long wave radiation (i.e. energy that the ground and water re-

emit back to the air).  

 

The model domain is shown in Foreman et al. 2009, Fig. 1. There were 21 vertical gridded layers 

with variable spacing from sea bottom to surface, with the highest resolution at the surface and 

bottom layers, and maximum inter layer spacing of 9% of the depth at mid column. Depth ranged 

between 3 m and 520 m (Cantrell et al. 2018). Daily freshwater river discharge values were used 

(see Fig. 1 for river locations). M2, N2, S2, K1, P1, and O1 tidal constituents were prescribed as 

forcing at the model boundaries, and hourly tidal data was used.  Hourly wind forcing data was 

captured with 9 weather stations deployed across the BA, with winds interpolated between and 

extrapolated beyond station locations to all grid elements (Foreman et al. 2009). The FVCOM 

physical circulation model outputs (i.e. wind, temperature, and salinity fields, and resulting 

currents) were validated by comparing model and observed tidal harmonics and calculating 

correlation coefficients between observed and modeled currents at several different depths at five 

separate weather stations across the BA for two weeks in late March, 2008. There was relatively 



good agreement, with the correlation coefficient worst at 4.5 m (0.74), and improving with depth, 

to a correlation coefficient of 0.94 at 130 m depth (Foreman et al. 2009).   

 

Hourly output from the hydrodynamic model was used by an offline particle-tracking model, in 

which each simulated particle represented a cohort of sea lice larvae. Each of these particles was 

coupled to a biological model that dictated the maturation and survivorship of the particle based on 

the salinity and temperature it encountered (Stucchi et al. 2011; Cantrell et al. 2018).  

 

The details of the equations governing the biology of the sea lice larvae can be found in (Cantrell 

et al. 2018). In short, particles where released as pre-infectious nauplii, which matured into 

infectious copepods at a rate that was temperature dependent. The relationship between 

temperature and maturity was set as a Bělehrádek equation, with lower temperatures resulting in 

slower maturation rates Additionally, salinity impacts nauplii particle survival, with salinity below 

30 psu resulting in decreased survival. Survival decreased at a constant rate once particles matured 

into copepods due to a lack of agreement in the literature as to the precise relationship between 

salinity and survival for sea lice copepods.  

 

The offline particle-tracking model simulated the release of 50 particles from each farm (n=20) 

every hour, for the duration of the simulation. Each release of particles is referred to as a pulse. 

The first day of pulses began on March 11
th

, 2009, and the last day of pulses was on July 20
th

, 

resulting in 129 total days, and 3096 pulses. The location and status of each particle was tracked 

for 11 days, in order to simulate the hypothetical lifespan of a sea lice copepod in the temperature 

conditions typical of the BA, with locations recorded at 20-minute time steps.   

 



Connectivity calculations  

Details of the methods used to calculate connectivity using the particle tracking releases can be 

found in Cantrell et al. (2018).  In brief, the infestation pressure (IP) each farm exerted on every 

other farm was estimated as follows: a cohort of sea lice was defined as 24 hours of particle pulses, 

and each of these groups was labelled as a “cohort release day” (CRD). The offline particle-

tracking model recorded location, maturation, and survivorship of all particles in each CRD every 

24 hours for 11 days. These 11 “snapshots” taken for 24 hours worth of pulses were then 

combined into a single shape file. Thus, each CRD represents the entire life of a cohort of particles 

released from all farms on one particular day of the simulation (Fig. 2 in Cantrell et al. 2018).   

 

Each CRD was then separated by emitting farm (i.e. all particles released from a single farm) and 

used as the input for kernel density estimations (KDE), which were then saved as raster files (129 

CRDs x 20 farms = 2,580 raster files). From each raster file, the density of particles at the grid 

section in which each farm was located was extracted. This density represents the IP that a given 

farm exerted on all other farms as well as on itself (self infestation), measured in particles km
-2

. 

These densities were stored in connectivity matrices, which were then summed and averaged 

(mean) for all 20 farms per CRD. These matrices could then be used to estimate a mean 

connectivity value for all connections in the entire network of farms for each CRD in the 

simulation. Using this methodological approach, Cantrell et al. (2018) identified four distinct sub-

networks of farms (Fig. 1). 

 

  



Farm connectivity with different biological drivers (i.e. maturation and survivorship) 

The mean connectivity score for every CRD was calculated for the entire network and for the four 

sub-networks. Additionally, each sub-network’s mean connectivity was calculated under four 

different scenarios to determine the relative contribution of the maturation and survivorship 

coefficients of the biological model by investigating the differences between the following four 

simulation scenarios: 

I. Physical simulation only, which excludes all parts of the biological model (particles 

are passive); 

II. Physical simulation plus survivorship simulation, which excludes the impacts of 

temperature (includes only the impact of salinity on the survivorship in the biological 

model and the physical simulation); 

III. Physical simulation plus maturation simulation, which excludes the impacts of 

salinity on the biological model (includes only the impacts of temperature on the 

maturation in the biological model, and the physical simulation); 

IV. Physical simulation plus maturation and survivorship simulation, (includes the 

impact from both temperature and salinity on the maturation and survivorship, 

respectively, and the physical simulation). 

As an indicator of factors explaining global connectivity for each sub-network, the area under the 

curve (AUC) of the mean connectivity plots for all CRDs was calculated for the four simulations 

of the four sub-networks (Figures not shown, values of AUC are given in the supplementary 

materials) using the MESS package in R studio, which uses spline integration (Claus Thorn 

Ekstrom 2017). The percent reduction in AUC compared to the physical model only simulation 

(i.e. particle tracking simulation without the biological model), was then calculated for each 

simulation and sub-network (Table 1). 



 

Generalized Additive Model to determine drivers of connectivity strength 

A GAM approach was used to identify environmental and biological factors influencing the 

emergent pattern seen in temporal variability in network connectivity. This modelling approach 

was chosen because GAM allows the relaxing of the assumption of linearity between the predictor 

and response variables by combining spline functions into a smoother line that best describes the 

relationship. GAMs also do not need to determine the functional form of the relationship 

beforehand (Guisan et al. 2016). Each sub-network was modelled separately in order to account 

for the hierarchy in the data and facilitate interpretation of the results, rather than using a 

generalized additive mixed model (GAMM). The response variable was the mean connectivity per 

CRD for the sub-network.  Four independent predictors were assessed: 

I. River discharge in m
3
s

-1
, as measured at river mouths in the BA (discharge contributions 

from eight rivers, with each river assigned to the closest sub-network);  

II. Daily solar heat flux value in watts m
-2

 (identical across the model domain); 

III. Either maximum daily or mean daily “along channel” wind velocity in ms
-1

, extracted from 

a location near each sub-network, which ever was more significant (coordinates in the 

supplementary materials). The sign of the wind gust (i.e. positive or negative) indicated 

wind direction (i.e. “up channel”, or seaward). The cross channel wind direction was not 

used, as it is unlikely to contribute significantly to the movement of particles up or down 

the channels. The maximum daily wind velocity was the more significant predictor for sub-

networks 1, 2, and 4. Mean wind velocity was the more significant predictor for sub-

network 3;  

IV. Daily tidal range (maximum minus minimum sea surface height) in m, from the Port Hardy 

tidal gauge  (50.6838° N, 127.3772° W), identical across the model domain. Note that sea 



surface height values have the potential to be impacted by other factors, such as winds. 

However, in this case, there was no collinearity observed between tidal height and other 

predictors, and tides are the main drivers of sea surface height in this area. 

 

Given that each CRD includes 11 days worth of connectivity information, each predictor was 

calculated as a rolling 11-day average to mirror the CRD structure. This resulted in a time series of 

129 time points, each an 11-day rolling average.  

 

Each independent predictor was used as an individual predictor first. Any sub-networks that had 

more than one predictor with a p-value < 0.15 were then modelled with all possible combinations 

of these predictors, including interactions. The top model was selected using AIC model selection 

techniques to maximise explanatory power with model parsimony (Burnham and Anderson 2002). 

 

The time series of all predictors (river discharge, heat flux forcing, winds, and tides) were checked 

for autocorrelation using an autocorrelation function (“acf” command in the mgcv package in R) 

(Wood 2006), (R core team, 2018). All predictors showed substantial autocorrelation, so an auto-

regressive term was included in all models. The value of rho for each model was computed by 

extracting the lag 1 value from the autocorrelation function residuals of each model. Rho values 

ranged from 0.77-0.9. The fast restricted maximum likelihood method was used for model 

building and comparisons (command, method =“fREML” in the bam() command of the mgcv 

package in R) (Wood 2006). The number of knots for all models was set using generalized cross 

validation in the mgcv package in R (Wood 2006).  Heat flux and river discharge demonstrated 

collinearity (possibly because hotter days could result in more run-off from snow melt, though 

potentially with a time lag), so were not considered together in one model. GAM smoothers were 



added to each plot of predictor vs. sub-network in order to more easily visualize the relationship 

between the two. 

 

Sensitivity Analysis  

A sensitivity analysis of the biological parameters (maturation and survivorship) was conducted 

for sub-network 2 (farms 6-7, and 16-18), because this sub-network most closely reflected the 

overall trend seen when all farms were grouped together (i.e. sub-network 2 also showed evidence 

of the four peaks seen in the overall connectivity plot, at the beginning of the simulation and at 

CRDs 59, 93, and 123, as seen in Fig. 2D). The sensitivity tests consisted of four simulations, 

where the values for maturation or survivorship for each particle for each time step was adjusted in 

the following ways: maturation decreased to 50%; maturation increased to 150%; survivorship 

decreased to 50%; survivorship increased to 150%.  

 

The total IP that the farms in sub-network 2 exerted on all of the other farms was calculated for 

every CRD in the simulation. Self-infestation was excluded to highlight the strength of 

connectivity among farms (i.e. the likelihood of parasite transmission between farms), rather than 

emphasizing CRDs that had high connectivity within farms. This IP was plotted for every CRD, 

and the results of the four simulations were compared with the simulation based on the full 

biological model (with both survivorship/maturation at their default levels). 

 

Results 

Overall farm connectivity strength under different scenarios 

The strength of the network connectivity for the physical model simulation is the highest of the 

four simulations (Fig. 2a).  The mean connectivity across the entire network for the physical model 



simulation (Fig. 2a) also has less temporal variability than the other simulations. The IP 

experienced per CRD ranges roughly between 7.8 and 10 particles km
-2

, representing 22% 

variation. 

 

The survivorship only simulation (Fig. 2b) had lower connectivity strength than the maturation 

only simulation (Fig. 2c). The IP ranged between roughly 0.6 and 2.4 particles km
-2

, representing 

75% variation. The survivorship only simulation also had a peak at the start of the simulation, 

followed by a gradual decrease for the remainder of the simulation. There are no peaks at CRDs 59, 

93 and 123, as seen in the survivorship/maturation simulation (Fig. 2b) or the maturation 

simulation (Fig. 2c). 

  

Not surprisingly, both simulations with only a portion of the biological model (the maturation only 

and survivorship only simulations) showed connectivity strength and variability intermediate 

between the physical model and full biological model (survivorship/maturation) simulations. The 

IP in the maturation only simulation (Fig. 2c) ranged from roughly 3.5 to 7.5 particles km
-2

, 

representing 53% variation. This simulation has a similar pattern to the full biological model 

simulation (Fig. 2d) in that there is a peak in connectivity in the beginning of the simulation that 

decreases over the first 20 CRDs, though the peak is smaller than that seen in the maturation-

survivorship simulations. The peaks in connectivity at CRD 59, 93, and 123 also exist in the 

maturation simulation.  

 

The survivorship-maturation simulation has the lowest overall connectivity (Fig. 2d), decreased by 

an order of magnitude over the purely physical simulation. The infestation pressure ranges roughly 

between 0.01 and 0.29 particles km
-2

, representing 97% variation. There is a distinct pattern that 



emerges, with the initial CRDs having a much higher overall connectivity than the rest of the 

simulation, and then sharply decreasing over the first 20 CRDs. There are also distinct peaks 

around CRDs 59 and 93, and a smaller peak around CRD 123. Possible reasons for this pattern are 

explained in the discussion. 

 

Sub-network connectivity differences 

The drivers of the temporal variability were also explored by sub-network for the simulation that 

included all aspects of the biological model (the survivorship/maturation simulation). Sub-network 

1 (Fig. 3a) and sub-network 4 (Fig 3d) do not have  peaks at CRD 123. Additionally, the initial 

peak in connectivity strength is lower than in sub-networks 2 or 3.  Sub-network 2 (Fig. 3b) has 

the same steep starting peak, as well as peaks at CRD 59, 93, and 123 that are present in Fig. 2d. 

Sub-network 3 (Fig. 3c) has only a small increase at CRD 59. Sub-network 4 (Fig. 3d) has a low 

overall connectivity. However, even with the low connectivity, there is still a slightly higher 

connectivity at the start of the simulation, as well as at CRD 93. 

  

The maturation only simulation resulted in a 40-68% reduction in the AUC depending on network. 

For the survivorship only simulation the reduction in AUC was greater than 80% for all sub-

networks. When the full biological model (survivorship and maturation) was used the value of the 

AUC was reduced by over 99%. 

 

Salinity and temperature as drivers of the biological model  

The mean salinity that each cohort encountered over the 11-day tracking period suggests that there 

was an overall decrease in salinity throughout the entire simulation period (Fig. 5a) coinciding 

with the river discharge increase (Fig. 5a, supplementary materials, and 7a- though the increase is 



not monotonic here). The temperature drops during the first 20 or so CRDs, but with a subsequent 

upswing peaking at CRD 59. There is a second increasing trend with a peak at CRD 93, with the 

temperature remaining higher until the end of the simulation, and a small peak again at CRD 123 

(Fig. 4b). The water temperature increased on these days due to increases in the heat flux (Fig. 5b). 

 

Within each individual cohort, there is a hooked shape seen in both Figs 5a and 5b. Cohorts start 

out at a lower salinity (Fig. 5a) and higher temperature (Fig. 5b). Salinity increases and 

temperature decreases over the CRD life, and then levels out slightly lower than the maximum 

salinity, and slightly higher than the minimum temperature. This shape is due to the vertical 

velocity components. Because the particles have not been assigned either a swimming ability to 

combat these downward velocities or a density that would stop descent when neutral buoyancy 

was attained, they moved passively with the downward (on average) vertical currents from the 

near-surface depths where they were released (until reaching the maximum depth constraint of 

5m). 

 

Additionally, Figs. 5a and 5b have a secondary axis, showing the instantaneous survivorship and 

maturation for each day of the simulation with that daily temperature and salinity input into the 

equations governing maturation and survivorship. The secondary axis shows the close relationship 

between the temperature and salinity experienced by particles and the instantaneous maturation 

and survivorship of the particles, with each increasing or decreasing together. The threshold in the 

survivorship equation is apparent in approximately the first 45 CRDs in Fig 5a, where survivorship 

is a constant when salinity is above 30. 

  

  



Drivers of connectivity strength 

The independent predictors included in the GAM model were the 11-day rolling averages of the 

daily values of river discharge, total heat flux forcing, wind, and tidal range (Fig. 4). The same 

plots for the river discharge and winds, but showing individual river discharge and weather station 

wind gusts, respectively, are in the supplementary materials. 

 

The relationship between all predictors and the connectivity for each sub-network has been 

graphed with smoothed plots in Fig. 6. Thus, the impact of river discharge on connectivity is 

roughly a nonlinear, negative relationship. When the river discharge increases, connectivity 

decreases as water with lower salinity floods the system. Thus, river discharge is a proxy for 

salinity (and thus lowers survivorship of sea lice particles). Sub-networks 1-3 were dominated by 

the river discharge (Fig. 6a-d), with between 56-74% deviance explained by river discharge alone. 

 

Total heat flux forcing (Fig. 6e-h) has the opposite, also nonlinear relationship, with increasing 

connectivity as temperature increases. Heat flux was significant for all sub-networks except 3.  

 

Wind has a direction associated with the sign of the predictor, with negative indicating seaward, 

and positive indicating “up channel” wind direction. Sub-networks 2 and 4 were significantly 

predicted by wind, with the negative wind direction (seaward) having higher connectivity results 

for both. Wind explained 42.9% deviance for sub-network 2 (Fig. 6j) and 13.6% of the deviance 

for sub-network 4 (Fig. 6k). Despite this rather low deviance for sub-network 4, wind has the 

largest explanatory power as a univariate predictor for this sub-network; the connectivity was not 

well explained by any of the four predictors examined. 

 



Tidal range was only significant for sub-network 2 (Fig. 6m-g). The relationship is roughly linear 

and negative, so as tidal range increases, connectivity decreases. 

 

For all sub-networks, all predictors with p-values < 0.15 were combined, as well as their 

interactions were tested in further GAMs (Table 3). The model for sub-network 1 did not improve 

from adding additional predictors to the river discharge predictor alone, or have any significant 

interactions. The top model based on AIC selection techniques  from sub-network 2 was also from 

river discharge as a predictor alone. However, the interaction for wind and tide was significant 

(p=0.002), and the model with river discharge and the interaction between wind and tide 

accounted for 82.3% of the deviance (despite having a higher AIC score). Sub-network 3 had only 

one predictor (river discharge) as statistically significant, so no further predictors were considered. 

The top AIC selected model for sub-network 4 included both heat-flux and wind, which resulted in 

a still poor percent deviance explained, of 32.4%.   

 

2009 as a representative year 

To determine how representative the simulation period was (March-July, 2009), the main driver of 

connectivity strength (river discharge) was plotted against a historical dataset of river discharge. 

This historical dataset has 41 years of data on river discharge  from the Kliniklani River (Fig. 7). 

Kliniklani discharge data began to be collected in 1968, and continues currently, however we only 

examined data up until the simulations time period (2009). The Kliniklani has the largest discharge 

in the BA, and is thus the most important in terms of impact on local circulation (Foreman et al. 

2015). The daily means for 2009 had 26 days during the simulation period that were outside of the 

standard deviation for the 41-year daily means. These occurred around simulation day 50, 100, and 

after day 140 (Fig. 7a). However, despite some daily variation, the daily cumulative average for 



2009 was within the standard deviations of the 41-year average for the entire simulation period 

(Fig. 7b). Thus, the two plots show that while there are a few days with variability outside of the 

standard deviation of the 41 year mean, over all, 2009 remains well within what is “typical” for the 

BA.  

 

Sensitivity Analysis 

Sensitivity analysis revealed that changing the maturation and survivorship parameters changed 

the magnitude of connectivity, but not the pattern in the timing of temporal spikes (i.e. there are 

still peaks on the same CRDs). The AUC calculations quantify the change in magnitude compared 

to the full biological model (survivorship/ maturation) simulation (Table 2). The percent change 

ranges from 38% to 414%, and changes in the maturation impact the AUC more than changes in 

the survival.  Fig. 8 is the mean connectivity for each CRD for the sensitivity analysis simulations. 

 

Discussion 

This study presents the output of a coupled bio-physical model of sea lice dispersal from salmon 

farms in the BA. The results provide a framework for how to analyse output from such models to 

quantify which processes affect the dispersion and viability of water-borne pathogens. The 

connectivity of the farms displayed high temporal variability, an emergent pattern that results from 

the many interacting aspects of both the biological and the physical model. GAM was used to 

elucidate the main drivers of the population level behaviour in the simulation. These outputs 

suggested that temporal patterns were largely dictated by the influence of the spring freshet, which 

caused declines in the salinity and temperature of surface waters, and thus modulated the number 

of particles that survived and matured into infectious copepodids. Thus, the temporal variability 

was largely the result of the biological model of sea lice survivorship and maturation associated 



with each particle in the simulation being impacted by the physical model conditions. The spring 

freshet decreases survivorship and slows maturation for larvae located in the upper layers of water. 

However, temporary spikes in connectivity can occur when temporary heat flux forcing spikes 

lead to temperature increases into the ideal range for sea lice larval maturation (100% hatching and 

development success was found to occur between 15-20 °C by Samsing et al. 2016). Additionally, 

spikes occurred when winds were blowing seaward, which allows particles to come into contact 

with other farms, rather than being blown towards the top of the fjordic channels where it cannot 

encounter another farm.  

 

Temporal variability in pathogen viability 

The rapid decrease seen in the first 20 CRDs of the survivorship/maturation simulation appears to 

some extent in both the survivorship simulation, and the maturation simulation. Neither part of the 

biological model clearly explains the entirety of the peak seen in the first 20 CRDs, suggesting the 

impacts of the maturation and survivorship aspects of the simulation are cumulative.  

 

An important part of the circulation of the BA is the spring freshet, when the snow in the 

surrounding mountains melts. This results in fresh, cold water entering the BA through river 

discharge at an average daily discharge rate upwards of 700m
3
s

-1
 by July. This was explicitly 

modelled in the underlying circulation model, and seems to be the single largest driving factor of 

the changes in salinity that impact survivorship in the biological model. Salinity gradually 

decreases as the simulation progresses (Fig. 5), with certain cohorts (i.e. around cohorts 105 and 

135) experiencing even larger decreases in salinity. The decrease in salinity corresponds to a 

decrease in survivorship. Additionally, temperature also drops during this time, also due to the 

spring freshet event, as discharged water is colder than the ocean water. This results in fewer 



particles reaching maturation. Thus the first steep drop in connectivity seen in the full biological 

model (the survivorship-maturation simulation) is due to the cumulative effects from a decrease in 

salinity and temperature, driven by the spring freshet ramping up. This results in fewer infectious 

sea lice copepods being present in the model domain, leading to a decrease in the strength of 

connectivity across the entire network. The high impact of the spring freshet was confirmed by 

GAM modelling, where between 56-76% of the deviance was explained by river discharge alone, 

for sub-networks 1-3. The fact river discharge was so much more important as a predictor for 

connectivity than heat flux forcing also confirms the importance of survivorship on connectivity, 

which is driven by salinity.  

 

The spring freshet might be acting as a “natural control” in the BA, slowing sea lice larval 

development and thus helping to keep sea lice loads low, which has also been suggested elsewhere 

(Brooks 2005). Thus with the current climate warming, a reduction in snowpack and glaciers is 

expected to reduce this “natural control” effect (Kang et al. 2016; Najafi et al. 2017). Additionally, 

warmer waters would result in shorter maturation times, and thus a higher density of infectious sea 

lice larvae in the water column. This suggests sea lice infection pressure will increase with time if 

climate change continues unabated (Bateman et al. 2016). 

 

Despite the importance of the freshet event and salinity on overall farm-to-farm connectivity in sea 

lice infection, we still find evidence for the importance of temperature on the temporal variability 

of these connectivity patterns. In the BA, temperature can be regulated by the spring freshet (as 

described above) and the heat flux forcing of the system to modulate surface water temperature. 

We observe a decrease in temperature seen in the first 20 CRDs (due to the river discharge) 

followed by a gradual increase in temperature and spikes around CRDs 59, 93, and 123 (due to 



temporary increases in the heat flux forcing). These spikes appear in the simulation with both the 

survivorship/maturation, and also appear in the maturation simulation, but not the survivorship 

simulation. This demonstrates that maturation, which is dictated by temperature (which is in turn, 

impacted by both the heat flux and the river discharge), is the main driver of the spikes in the 

network strength on those particular CRDs. However, the spikes at CRDs 59, 93, and 123, do not 

reach the connectivity strength seen at the start of the simulation (Fig. 2b). Thus, the heat flux 

forcing alone was not enough to overcome the impacts of the river discharge on survivorship, 

probably because of the countering effect of cold river discharge from snow and glacial run-off. 

Additionally, the relatively colder, fresher water tends to stay mostly in a less dense upper layer in 

the water column during a freshet event (particularly in fjordic areas), where sea lice are generally 

located (Oppedal et al. 2017). 

 

Temporal variability in disease connectivity has been observed in multiyear and annual 

simulations from other regions. Samsing et al. (2017) ran bio-physical simulations of the 

Norwegian west coast for six years and found strong seasonality in the farm-to-farm connectivity 

of sea lice infection, with consistency of seasons across years; although connectivity drivers across 

seasons were not discussed. Adams et al. (2016) simulated the Scottish west coast for one year, 

and found farm-to-farm sea lice infection connectivity varied over time by a factor of two; 

similarly, particular drivers of why this variation exists were not in the scope of the paper. This 

suggests that high temporal variability in network connectivity strength in pathogen dispersal may 

be the rule, rather than an exception, and thus any connectivity or larval dispersal simulations 

could benefit from analyzing temporal variability. Additionally, any management 

recommendations made from simulations should use a precautionary management approach, with 

the “worst case scenario” in mind (i.e. conditions for when the connectivity strength is the highest), 



as even temporally short “pulses” of high connectivity strength can result in outbreak scenarios 

(Velentgas et al. 2013). 

 

Simulation time period 

Our model simulates circulation conditions from March—July 2009. The representativeness of a 

“typical” year for the BA is important for applying results to other years. Cumulative discharge for 

2009 was within the standard deviation of the 41-year mean for the entire simulation period. 

However, 17% of the days in the simulation period had daily discharge values outside of the 

standard deviations of the 41-year daily mean, generally due to unusually large storm events, of 

which there were none during our simulation period. River discharge was the most important 

factor impacting connectivity across every connected sub-network of farms. (ie sub-networks 1-3).  

Therefore, the circulation conditions of 2009 are likely relatively “typical” for the region, which 

increases confidence in applying model results to other “typical” years.  However, caution should 

be used when applying results to non-typical years (i.e. years with unusually small snow pack in 

the mountains and thus a smaller freshet event, or unusually warm years, or years when the freshet 

timing may be off). These scenarios may be particularly important in the context of climate change.  

 

Spatial drivers of pathogen dispersion  

The fact that the four sub-networks resulted in different variables for creating the top selected 

GAM models demonstrates that environmental drivers of connectivity can vary, even on relatively 

small spatial scales. It is perhaps not surprising that the farms belonging to sub-network 4 were not 

as impacted by river discharge as the other sub-networks, given that the farms involved in this sub-

network are closer to the open ocean, and furthest away from the mouths of rivers compared to the 

other sub-networks. It is worth noting that though we called these farms “sub-network 4” for ease 



of discussion, they are in fact a group of independent, unconnected farms. Most of the particles 

released from these farms were simply flushed out to sea. Thus, it is likely the connectivity was so 

low for this sub-network, finding significant associations with any driver would be difficult, and 

the top selected model of both wind and heat-flux only explaining 32.4% of the deviance is 

perhaps to be expected.  Likewise, the relationship of sub-networks 1-3 to river discharge is 

perhaps not surprising, given the much closer proximity of these sub-networks to large river 

mouths.  

 

The GAM models indicate wind to be an important driver in sub-networks 2 and 4. Sub-network 2 

is in a more closed, protected area of the BA. The negative wind direction (seaward) has a strongly 

positive association with connectivity strength. This could be because wind in the seaward 

direction (i.e. a south—westerly wind for sub-networks 1 and 2) would create surface currents that 

would carry particles from these sub-networks of farms into contact with other farms. For sub-

network 2, a southwesterly wind would push the particles towards each other, to circulate in the 

area, rather than being flushed out and away from the farms. There is a less strong, but still 

significant relationship between wind and connectivity strength in sub-network 4. For this sub-

network, a north-westerly wind would push particles from farms 19-20 towards farms 8, 9 and 12-

14, thus increasing connectivity amongst this low connected sub-network, rather than just being 

flushed out of the BA before encountering other farms. Sub-network 1 was not significantly driven 

by wind; however, this variable was retained in the top selected model. Furthermore, this sub-

network shares the same trend in wind direction (i.e. seaward resulting in the highest connectivity) 

as observed for sub-networks 1 and 4. Only sub-network 3 did not share this trend and seemed to 

be poorly explained by wind. Though this could be due, in part, to the fact this sub-network had 



such a large impact from the river discharge, it essentially “drowned” out any signal from other 

drivers.  

 

Tidal range was not detected by the GAM modeling approach to be an important driver in farm-to-

farm connectivity of sea lice infection. However, this could be due in part to the way the particles 

were grouped in our analysis. Twenty-four hours of particle pulses where grouped together as one 

“cohort”, which could alias the influence of tidal cycles. However, the 24-hour grouping of 

cohorts would not mask tidal fluctuations longer than 24 hours in duration (e.g., spring and neap 

tides), or seasonal variations in tides, such as the higher tides seen near the summer solstice. This 

seasonal variation is more important from an epidemiological perspective, as individual tidal cycle 

impacts would be for short period (on the scale of hours) and would essentially repeat daily. Thus, 

the variation in IP strength caused from daily tidal cycles would be similar from day to day. 

Additionally, the AUC calculations (Table 2) suggest that adding the survivorship of the particles 

to the simulation results in a larger reduction in connectivity of the sub-networks. Survivorship 

reflects mainly the impact of the freshet. The reduction in AUC from maturation (reflecting the 

impact of both heat flux and the spring freshet) is both smaller and more variable across sub-

networks. This variation is likely a reflection of differences in time particles emitted from each 

sub-network have around other farms before being flushed out of the vicinity. Sub-network 4 has 

the largest impact from maturity, because it had very few particles connect with other farms. Thus, 

adding the maturation restriction (i.e. the particles do not “count” in the first few days of their lives 

as they are not yet viable) has a larger impact on this sub-network’s connectivity to the other farms 

than the other sub-networks. Sub-network 2 has the lowest impact from maturity, as the time those 

particles spend around other farms in the BA is quite high, thus adding maturity to the simulation 

had a smaller impact.  



 

Impacts of changes in the biological model on connectivity strength 

The sensitivity analysis revealed that changing the biological model outcomes by increasing or 

decreasing the survivorship and maturation values assigned to each particle resulted in changes in 

the strength of connectivity, but did not change the overall pattern observed. In other words, the 

particles km
-2

 might increase with increasing maturation values, but the peaks seen at the 

beginning of the simulation, as well as at CRDs 59, 93, and 123 remained.  This could be 

important if the objective is to estimate exact infestation pressures, to keep exposure below a 

certain infectious dose. However, in the case of sea lice, the infectious dose necessary to result in a 

sea lice infestation is not known. Therefore, translating the absolute number of particles km
-2 

into 

absolute risk values is not yet possible (Frenzl 2014). It is, however, possible to consider relative 

risk and recommend spatial management solutions that may reduce the likelihood of outbreaks. 

These do not change whether the connectivity strength is small or large or orders of magnitude 

different. Therefore, in the case of this particular study, the sensitivity analysis revealed that the 

parameters are robust when the goal is to identify connectivity patterns.  

 

Applied results for the salmon industry 

Outputs from bio-physical simulations for disease management in aquaculture (not only for sea 

lice, but for any larval and/or pathogen connectivity study) need to be validated by field data 

before being implemented, as excluding key parts of larval biology can change the spatial 

connectivity pattern and/or temporal variability tied to the life history of the larvae. Validation of 

parasitic larvae dispersal models is difficult and expensive. Some attempts at validation with field 

data include plankton tows in areas with higher risk of infestation pressure, as well as sentinel 

cages (Pert et al. 2014). However, because sea lice larvae tend to be quite low in concentration in 



the water column, typically fewer than five sea lice larvae are found in each standard tow. The low 

sample size makes this method a less than ideal validation method. Additionally, it is difficult to 

account for the impact of wild salmon on disease transmission, as wild salmon routes are not fully 

known and sea lice connectivity simulations thus far do not explicitly model wild salmon 

populations. Nevertheless, validation of this model must be undertaken before management 

suggestions are implemented, and thus is the focus of ongoing research. 

 

At this stage, the model output can allow for some practical recommendations for the salmon 

farming industry in the BA. Model output suggests that outbreak scenarios are more likely to 

result when river discharge is low. Years with less snow pack in the surrounding mountains could 

contribute to more difficult sea lice management. Managers can also anticipate outbreaks during 

warmer time periods, and during periods with seaward winds for each sub-network, which will 

keep particles in the BA for longer, and thus result in a higher infestation pressure. This result is a 

particular concern as the temperature of the BA coastal waters rise with global warming (Wolff et 

al. 2017). 

 

Additionally, the model could be used to simulate hypothetical scenarios to explore the 

impact of management practices on sea lice transmission. For example, the effect of 

coordinated treatment could be explored by analyzing connectivity after the removal of sea 

lice from one/several farms at a given time 

 

Any farms kept in current locations or future farms placed near current farm locations should 

consider using these sub-networks as treatment areas for sea lice management, as treating only one 

farm will likely result in re-infection. Additionally, future farm locations placed near the current 



sub-network 4 could result in farms less connected via shared pathogens. Care should be taken to 

not place farms near the current farm 11, which acts as a pathway to connect sub-networks 1 and 3 

(see Cantrell et al. 2018). Model results suggest that farms located closer to the open ocean are less 

likely to infect one-another; however, the role of farms in these locations to infect wild salmon 

populations is not known and requires further investigation.   

 

The relevance of sea lice biology on connectivity 

Our simulations suggested that connectivity output from coupled bio-physical models is 

potentially highly dependent on the biological model of the particle whose dispersal is being 

simulated (in our case, the sea lice copepod). However, as recently highlighted in the review paper 

by Brooker et al. (2018), there is no final consensus around the parameters or equations governing 

sea lice biology. Thus, marine epidemiology, sea lice modelling, and spatial ecology scientific 

communities would benefit from a consensus being reached on the impact of salinity and 

temperature on the life history of the sea lice larvae. 

 

There are conflicting reports on how salinity and temperature impact sea lice. For example, Groner 

et al. (2015) used existing literature on salinity impacts on different life stages of sea lice to fit 

salinity dependent logistic-mortality curves, and found that salinity has a non-linear effect on sea 

louse survival, with most effects at less than 20 psu; a value substantially lower than the threshold 

in our study, which was 30 psu. However, other studies found impacts of salinity on mortality 

began at much higher salinity. For example, Bricknell et al. (2006) found that at 29 ppt survival 

was severely reduced, and larvae had a reduced ability to sense or respond to the presence of a 

host; a behaviour that our simulation did not explicitly model. Johnson and Albright (1991) found 



reduced activity and survival below 25 ppt (Note that these studies measured salinity in different 

units, ppt vs psu, but for practical purposes they are nearly equivalent). 

 

In terms of impact of temperature on development time from nauplius to infectious copepod, 

Gravil (1996), Boxaspen and Naess (2000), and Samsing et al. (2016) found different development 

times based on nauplius stage, as well as impacts on egg development time. None of these 

individual stages were explicitly modelled in our simulation, where particles were considered only 

pre-infectious or infectious (i.e. copepodids). While lacking agreement on specific times for each 

development stage, all studies on the impacts of temperature on maturation found a substantial 

positive relationship, with warmer waters decreasing development time. This relationship suggests 

that future scenarios of warming oceans could render control of sea lice more difficult (Groner et 

al. 2014; Gallana et al. 2016; Cunningham et al. 2017; Algeo et al. 2019).  

 

Model limitations 

Our simulation did not explicitly model several aspects of sea lice larval life history. For example, 

the impacts of salinity and temperature on egg hatching rates and success were not modelled. 

Additionally, diel vertical migrations have been shown to impact horizontal dispersion of sea lice, 

reducing dispersal lengths (Johnsen et al. 2016). Particles in our simulation were not given diel 

migration behaviours, thus our simulation may over estimate dispersion lengths, which could 

result in the sub-networks being identified to include farms that should not be included. 

 

Settlement of infectious particles on hosts was also not explicitly simulated, though contact time of 

infectious copepods and competition for space on hosts is known to be important for attachment 

rates (Frenzl 2014). However, for agent based models to successfully capture emergent behaviours, 



it is not necessary (nor feasible) to model every single detail of a system (Grimm et al. 2005). 

Though we did not explicitly model impacts on host seeking behaviour and settlement, we did 

model the impact of salinity on survivorship, with salinity below 31 psu adversely impacting 

survival. This was one of the higher salinity thresholds in the literature. This most likely captures 

at least some aspects of survival and settlement impacts, and would again mean dispersal lengths 

are over estimated in our simulation. Accordingly, both of these limitations represent a “worst case 

scenario” in terms of connectivity, which is compatible with the proposed precautionary approach 

to sea lice management. We also were not able to include wild salmon in the simulation, which 

could act as vectors for sea lice transmission in addition to the hydro-dynamic connectivity 

explored in this paper. 

 

Conclusions 

The outcomes of this coupled bio-physical modelling exercise emphasize the importance of 

physical exchange in the absolute magnitude of connectivity. As indicated, the addition of 

biological parameters greatly attenuates connectivity. For pathogens where biological aspects are 

poorly understood (viruses), physical connectivity alone would provide an uncertain representation 

of infection pressure. In addition, uncertainty in the physical model or its forcing inputs (e.g. wind) 

would introduce large errors in the modelling framework if biological components were 

subsequently added as layers.   

 

In terms of sea lice management specifically, the temporal variability in the network strength is 

important from an epidemiological perspective, as even small peaks in infectious dosage can result 

in higher incidents of disease (Frenzl 2014). Therefore, a precautionary approach to management 

should be used i.e. plan for the times when higher temperature and salinity would result in more 



infectious copepods in the water. Similarly, modelling assumptions should aim to capture “worse 

case scenarios”, i.e. maximizing connectivity. The spring freshet event was the single most 

important driver of sea lice connectivity in the Broughton Archipelago region, and played a role in 

attenuating the strength of the connectivity between farms. Epidemiologically relevant spatial 

management holds promise towards improving the sustainability of the aquaculture industry, by 

refining the efficacy and economics of infectious disease treatments, improving farmed fish 

welfare, and minimizing pathogen spill over to wild fish stocks.  
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Table 1 The percent change in AUC from the “no biological model” simulation to the three 

simulations including all or some aspect of the biological model. 

 

 Maturation Survivorship Full bio model 
Sub-network 1 58.5 87.7 99.4 
Sub-network 2 40.8 87.9 99.3 
Sub-network 3 52.1 88.1 99.4 
Sub-network 4 68.2 80.1 99.8 

 
 
 
Table 2 Output for GAM models with more than one predictor with p-values <0.15, tried with 

multiple predictors together (the unconditional association of only river is also show in the table 

for comparison purposes between the models, and because sub-network 3 only had river as a 

significant predictor 

 

 
Sub-network Predictors p-values AIC % dev exp 

1 River <0.001 -791.00 56.1 
1 RiverXwind Interaction = 0.09 -789.98 58.6 
     

2 River <0.001 -707.34 66.2 
2 windXtide 0.002 -671.39 64.3 
2 riverXtide 0.099 -698.03 73.5 
2 riverXwind 0.147 -700.92 71.5 

     

3 River <0.001 -998.20 72.3 

     

4 Heat 0.002 -1005.18 8.7 

4 heatXwind 0.135 -1001.31 34.7 

 
 

 
Table 3 AUC for sensitivity analysis simulation plot. 

 

Simulation AUC % change from complete 
(survivorship/maturation) 

simulation 
Full bio model 13.39 - 

50% maturation 1.55 -88.42 
150% maturation 42.00 213.67 
50% survivorship 8.29 -38.09 

150% survivorship 24.88 85.81 

 
 



 

Fig 1 Map of the study area, showing the locations of farms and approximate locations of major 

river mouths. 

  

Fig 2 Connectivity plots for the entire network of farms, for four different simulations. Yellow 

points are the mean connectivity of the entire network for a given CRD, and yellow bars are 

standard deviations. The blue lines show GAM smoothers. a) Physical model, b) Survivorship 

only, c) Maturation only, d) Maturation and Survivorship. Note that the y-axes are on four 

different scales. 

  

Fig 3 Connectivity plots for the simulation based on the full biological model (survivorship and 

maturation). a) Sub-network 1 (farms 1-5), b) Sub-network 2 (farms 6-7 and 16-18), c) Sub-

network 3 (farms 10-11 and 15), and d) Sub-network 4 (farms 8-9, 12-14, and 19-20).  

  

Fig 4 Summary of the dependent variables in the GAM model. All panels show a rolling 11-day 

average to mimic the 11 days that each CRD represents. a) River discharge, summed from all 8 

rivers (m
3
s

-1
). b) Heat flux, which was the same for the entire model domain (watts m

-2
). c) Tidal 

range, data taken from the Port Hardy weather station (m). d) Maximum wind gust in modelled 

winds, extracted from the 4 weather station locations used to force the physical model reported in 

Foreman et al, 2008 (ms
-2

). Plots showing the river discharge for each individual river and the 

wind gusts for each individual station can be found in the supplementary materials.  

  

Fig 5 a) Mean salinity and, b) Mean temperature, for each cohort of particles, throughout the 11-

day simulation, shown in blue. The second y-axis shows the a) Instantaneous survivorship rate, 

and b) Instantaneous maturation rate produced by the mean salinity and temperature each cohort is 

experiencing for that day, shown as the black lines. The flat part of the black line in panel (a) over 

days 10-40 is due to the fact that instantaneous maturation is a constant when salinity > 31, which 

occurred over these initial days of the simulation. 

  

Fig 6 Smoothed plots for the GAMs. Each predictor (horizontal row) is shown for each sub-

network (vertical column),  to provide a set of unconditional associations. a-d) are river discharge, 

e-h) are heat-flux, i-l) are wind, and m-p) are tide, (for sub-networks 1-4, respectively.) 

  

Fig 7 A comparison between the simulated year (2009) and 41 years of historical  data. The mean 

values for 2009 (red line) and for all 41 years (black line), together with the standard deviations 

over these years (in grey) are illustrated for: a) the mean daily river discharge, and, b) the 

cumulative averages over the period of the simulation. 

 

 

  



 

 



 

 



 

 
 



 
 



 

 
 

 

 

 

 

 



 
 

 

 



 

 

 

 

 
 


