310 research outputs found

    Epigenetic profiling of ADHD symptoms trajectories: a prospective, methylome-wide study

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) is a prevalent developmental disorder, associated with a range of long-term impairments. Variation in DNA methylation, an epigenetic mechanism, is implicated in both neurobiological functioning and psychiatric health. However, the potential role of DNA methylation in ADHD symptoms is currently unclear. In this study, we examined data from the Avon Longitudinal Study of Parents and Children (ALSPAC)-specifically the subsample forming the Accessible Resource for Integrated Epigenomics Studies (ARIES)-that includes (1) peripheral measures of DNA methylation (Illumina 450k) at birth (n=817, 49% male) and age 7 (n=892, 50% male) and (2) trajectories of ADHD symptoms (7-15 years). We first employed a genome-wide analysis to test whether DNA methylation at birth associates with later ADHD trajectories; and then followed up at age 7 to investigate the stability of associations across early childhood. We found that DNA methylation at birth differentiated ADHD trajectories across multiple genomic locations, including probes annotated to SKI (involved in neural tube development), ZNF544 (previously implicated in ADHD), ST3GAL3 (linked to intellectual disability) and PEX2 (related to perixosomal processes). None of these probes maintained an association with ADHD trajectories at age 7. Findings lend novel insights into the epigenetic landscape of ADHD symptoms, highlighting the potential importance of DNA methylation variation in genes related to neurodevelopmental and peroxisomal processes that play a key role in the maturation and stability of cortical circuits

    Accurate automated quantitative imaging of tortoise erythrocytes using the NIS image analysis system

    Get PDF
    The standard method for assessing blood cell characteristics using an ocular micrometer is time-consuming and limited. We used the Nikon NIS Elements imaging software and May-Grünwald-Giemsa staining to determine whether automated image analysis is suitable for rapid and accurate quantitative morphometry of erythrocytes. Blood was collected during four seasons from 126 geometric tortoises and the blood smears were evaluated for cell (C) and nuclear (N) characteristics of the erythrocytes. We measured area, length (L), width (W), perimeter, elongation and pixelation intensity, and calculated L/W and N/C areas. Erythrocyte size differed among cohorts; females, the larger sex, had smaller erythrocytes than either males or juveniles. Males had more elongated erythrocytes than females and erythrocytes of adults were more elongated than those of juveniles. Erythrocyte size and shape influence the efficiency of gas exchange owing to surface area to volume ratios, which are greater for small, elongated cells than for large, round cells. The high N/C ratio and low pixelation intensities of males and juveniles indicate that they may have had more immature erythrocytes in their circulation than females. The use of pixelation intensity to indicate the presence of immature erythrocytes was validated by seasonal differences that corresponded to the biology of the tortoises. Pixelation intensity was lowest in winter. We found that automated image analysis is a rapid and reliable method for determining cell size and shape, and it offers the potential for distinguishing among developmental stages that differ in staining intensity. The method should be useful for rapid health assessments, particularly of threatened species, and for comparative studies among different vertebrates.Web of Scienc

    False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The entomological inoculation rate (EIR) is an important indicator in estimating malaria transmission and the impact of vector control. To assess the EIR, the enzyme-linked immunosorbent assay (ELISA) to detect the circumsporozoite protein (CSP) is increasingly used. However, several studies have reported false positive results in this ELISA. The false positive results could lead to an overestimation of the EIR. The aim of present study was to estimate the level of false positivity among different anopheline species in Cambodia and Vietnam and to check for the presence of other parasites that might interact with the anti-CSP monoclonal antibodies.</p> <p>Methods</p> <p>Mosquitoes collected in Cambodia and Vietnam were identified and tested for the presence of sporozoites in head and thorax by using CSP-ELISA. ELISA positive samples were confirmed by a <it>Plasmodium </it>specific PCR. False positive mosquitoes were checked by PCR for the presence of parasites belonging to the Haemosporidia, Trypanosomatidae, Piroplasmida, and Haemogregarines. The heat-stability and the presence of the cross-reacting antigen in the abdomen of the mosquitoes were also checked.</p> <p>Results</p> <p>Specimens (N = 16,160) of seven anopheline species were tested by CSP-ELISA for <it>Plasmodium falciparum </it>and <it>Plasmodium vivax </it>(Pv210 and Pv247). Two new vector species were identified for the region: <it>Anopheles pampanai </it>(<it>P. vivax</it>) and <it>Anopheles barbirostris </it>(<it>Plasmodium malariae</it>). In 88% (155/176) of the mosquitoes found positive with the <it>P. falciparum </it>CSP-ELISA, the presence of <it>Plasmodium </it>sporozoites could not be confirmed by PCR. This percentage was much lower (28% or 5/18) for <it>P. vivax </it>CSP-ELISAs. False positive CSP-ELISA results were associated with zoophilic mosquito species. None of the targeted parasites could be detected in these CSP-ELISA false positive mosquitoes. The ELISA reacting antigen of <it>P. falciparum </it>was heat-stable in CSP-ELISA true positive specimens, but not in the false positives. The heat-unstable cross-reacting antigen is mainly present in head and thorax and almost absent in the abdomens (4 out of 147) of the false positive specimens.</p> <p>Conclusion</p> <p>The CSP-ELISA can considerably overestimate the EIR, particularly for <it>P. falciparum </it>and for zoophilic species. The heat-unstable cross-reacting antigen in false positives remains unknown. Therefore it is highly recommended to confirm all positive CSP-ELISA results, either by re-analysing the heated ELISA lysate (100°C, 10 min), or by performing <it>Plasmodium </it>specific PCR followed if possible by sequencing of the amplicons for <it>Plasmodium </it>species determination.</p

    Defining genes: a computational framework

    Get PDF
    The precise elucidation of the gene concept has become the subject of intense discussion in light of results from several, large high-throughput surveys of transcriptomes and proteomes. In previous work, we proposed an approach for constructing gene concepts that combines genomic heritability with elements of function. Here, we introduce a definition of the gene within a computational framework of cellular interactions. The definition seeks to satisfy the practical requirements imposed by annotation, capture logical aspects of regulation, and encompass the evolutionary property of homology

    Malaria transmission and vector behaviour in a forested malaria focus in central Vietnam and the implications for vector control

    Get PDF
    BACKGROUND: In Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province. METHODS: Five entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses. RESULTS: The mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium-infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and Anopheles pampanai as vectors. CONCLUSION: The vector behaviour and spatio-temporal patterns of malaria transmission in Southeast Asia impose new challenges when changing objectives from control to elimination of malaria and make it necessary to focus not only on the known main vector species. Moreover, effective tools to prevent malaria transmission in the early evening and in the early morning, when the treated bed net cannot be used, need to be developed

    Neurology and neuropsychiatry of COVID-19: a systematic review and meta-analysis of the early literature reveals frequent CNS manifestations and key emerging narratives

    Get PDF
    There is accumulating evidence of the neurological and neuropsychiatric features of infection with SARS-CoV-2. In this systematic review and meta-analysis, we aimed to describe the characteristics of the early literature and estimate point prevalences for neurological and neuropsychiatric manifestations.We searched MEDLINE, Embase, PsycINFO and CINAHL up to 18 July 2020 for randomised controlled trials, cohort studies, case-control studies, cross-sectional studies and case series. Studies reporting prevalences of neurological or neuropsychiatric symptoms were synthesised into meta-analyses to estimate pooled prevalence.13 292 records were screened by at least two authors to identify 215 included studies, of which there were 37 cohort studies, 15 case-control studies, 80 cross-sectional studies and 83 case series from 30 countries. 147 studies were included in the meta-analysis. The symptoms with the highest prevalence were anosmia (43.1% (95% CI 35.2% to 51.3%), n=15 975, 63 studies), weakness (40.0% (95% CI 27.9% to 53.5%), n=221, 3 studies), fatigue (37.8% (95% CI 31.6% to 44.4%), n=21 101, 67 studies), dysgeusia (37.2% (95% CI 29.8% to 45.3%), n=13 686, 52 studies), myalgia (25.1% (95% CI 19.8% to 31.3%), n=66 268, 76 studies), depression (23.0% (95% CI 11.8% to 40.2%), n=43 128, 10 studies), headache (20.7% (95% CI 16.1% to 26.1%), n=64 613, 84 studies), anxiety (15.9% (5.6% to 37.7%), n=42 566, 9 studies) and altered mental status (8.2% (95% CI 4.4% to 14.8%), n=49 326, 19 studies). Heterogeneity for most clinical manifestations was high.Neurological and neuropsychiatric symptoms of COVID-19 in the pandemic's early phase are varied and common. The neurological and psychiatric academic communities should develop systems to facilitate high-quality methodologies, including more rapid examination of the longitudinal course of neuropsychiatric complications of newly emerging diseases and their relationship to neuroimaging and inflammatory biomarkers

    A Preclinical Assessment of Neural Stem Cells as Delivery Vehicles for Anti-Amyloid Therapeutics

    Get PDF
    Transplantation of neural stems cells (NSCs) could be a useful means to deliver biologic therapeutics for late-stage Alzheimer's disease (AD). In this study, we conducted a small preclinical investigation of whether NSCs could be modified to express metalloproteinase 9 (MMP9), a secreted protease reported to degrade aggregated Aβ peptides that are the major constituents of the senile plaques. Our findings illuminated three issues with using NSCs as delivery vehicles for this particular application. First, transplanted NSCs generally failed to migrate to amyloid plaques, instead tending to colonize white matter tracts. Second, the final destination of these cells was highly influenced by how they were delivered. We found that our injection methods led to cells largely distributing to white matter tracts, which are anisotropic conduits for fluids that facilitate rapid distribution within the CNS. Third, with regard to MMP9 as a therapeutic to remove senile plaques, we observed high concentrations of endogenous metalloproteinases around amyloid plaques in the mouse models used for these preclinical tests with no evidence that the NSC-delivered enzymes elevated these activities or had any impact. Interestingly, MMP9-expressing NSCs formed substantially larger grafts. Overall, we observed long-term survival of NSCs in the brains of mice with high amyloid burden. Therefore, we conclude that such cells may have potential in therapeutic applications in AD but improved targeting of these cells to disease-specific lesions may be required to enhance efficacy

    A Computational Model of the Development of Separate Representations of Facial Identity and Expression in the Primate Visual System

    Get PDF
    Experimental studies have provided evidence that the visual processing areas of the primate brain represent facial identity and facial expression within different subpopulations of neurons. For example, in non-human primates there is evidence that cells within the inferior temporal gyrus (TE) respond primarily to facial identity, while cells within the superior temporal sulcus (STS) respond to facial expression. More recently, it has been found that the orbitofrontal cortex (OFC) of non-human primates contains some cells that respond exclusively to changes in facial identity, while other cells respond exclusively to facial expression. How might the primate visual system develop physically separate representations of facial identity and expression given that the visual system is always exposed to simultaneous combinations of facial identity and expression during learning? In this paper, a biologically plausible neural network model, VisNet, of the ventral visual pathway is trained on a set of carefully-designed cartoon faces with different identities and expressions. The VisNet model architecture is composed of a hierarchical series of four Self-Organising Maps (SOMs), with associative learning in the feedforward synaptic connections between successive layers. During learning, the network develops separate clusters of cells that respond exclusively to either facial identity or facial expression. We interpret the performance of the network in terms of the learning properties of SOMs, which are able to exploit the statistical indendependence between facial identity and expression
    corecore