9,557 research outputs found

    Fiber optic wavelength division multiplexing: Principles and applications in telecommunications and spectroscopy

    Get PDF
    Design and fabrication tradeoffs of wavelength division multiplexers are discussed and performance parameters are given. The same multiplexer construction based on prism gratings has been used in spectroscopic applications, in the wavelength region from 450 to 1600 nm. For shorter wavelengths down to 200 nm, a similar instrument based on longer fibers (500 to 1000 micrometer) has been constructed and tested with both a fiber array and a photodiode detector array at the output

    Simulated three-component granular segregation in a rotating drum

    Full text link
    Discrete particle simulations are used to model segregation in granular mixtures of three different particle species in a horizontal rotating drum. Axial band formation is observed, with medium-size particles tending to be located between alternating bands of big and small particles. Partial radial segregation also appears; it precedes the axial segregation and is characterized by an inner core region richer in small particles. Axial bands are seen to merge during the long simulation runs, leading to a coarsening of the band pattern; the relocation of particles involved in one such merging event is examined. Overall, the behavior is similar to experiment and represents a generalization of what occurs in the simpler two-component mixture.Comment: 7 pages, 11 figures (low resolution color figures only; originals at author's website http://www.ph.biu.ac.il/~rapaport/research/granular.html) [revised version contains extra figures

    EPR and pulsed ENDOR study of intermediates from reactions of aromatic azides with group 13 metal trichlorides

    Get PDF
    The reactions of group 13 metal trichlorides with aromatic azides were examined by CW EPR and pulsed ENDOR spectroscopies. Complex EPR spectra were obtained from reactions of aluminium, gallium and indium trichlorides with phenyl azides containing a variety of substituents. Analysis of the spectra showed that 4-methoxy-, 3-methoxy- and 2-methoxyphenyl azides all gave ‘dimer’ radical cations [ArNHC6H4NH2]+• and trimers [ArNHC6H4NHC6H4NH2]+• followed by polymers. 4-Azidobenzonitrile, with its electron-withdrawing substituent, did not react. In general the aromatic azides appeared to react most rapidly with AlCl3 but this reagent tended to generate much polymer. InCl3 was the least reactive group 13 halide. DFT computations of the radical cations provided corroborating evidence and suggested that the unpaired electrons were accommodated in extensive π-delocalised orbitals. A mechanism to account for the reductive conversion of aromatic azides to the corresponding anilines and thence to the dimers and trimers is proposedPublisher PDFPeer reviewe

    A Program of Photometric Measurements of Solar Irradiance Fluctuations from Ground-based Observations

    Get PDF
    Photometric observations of the sun have been carried out at the San Fernando Observatory since early 1985. Since 1986, observations have been obtained at two wavelengths in order to separately measure the contributions of sunspots and bright facular to solar irradiance variations. Researchers believe that the contributions of sunspots can be measured to an accuracy of about plus or minus 30 ppm. The effect of faculae is much less certain, with uncertainties in the range of plus or minus 300 ppm. The larger uncertainty for faculae reflects both the greater difficulty in measuring the facular area, due to their lower contrast compared to sunspots, and the greater uncertainty in their contrast variation with viewing angle on the solar disk. Recent results from two separate photometric telescopes will be compared with bolometric observations from the active cavity radiometer irradiance monitor (ACRIM) that was on board the Solar Max satellite

    EMCCDs for space applications

    Get PDF
    This paper describes a qualification programme for Electron-Multiplication Charge Coupled Devices (EMCCDs) for use in space applications. While the presented results are generally applicable, the programme was carried out in the context of CCD development for the Radial Velocity Spectrometer (RVS) instrument on the European Space Agency's cornerstone Gaia mission. We discuss the issues of device radiation tolerance, charge transfer efficiency at low signal levels and life time effects on the electron-multiplication gain. The development of EMCCD technology to allow operation at longer wavelengths using high resistivity silicon, and the cryogenic characterisation of EMCCDs are also described

    Modelling the Extreme X-ray Spectrum of IRAS 13224-3809

    Get PDF
    The extreme NLS1 galaxy IRAS 13224-3809 shows significant variability, frequency depended time lags, and strong Fe K line and Fe L features in the long 2011 XMM-Newton observation. In this work we study the spectral properties of IRAS 13224-3809 in detail, and carry out a series of analyses to probe the nature of the source, focusing in particular on the spectral variability exhibited. The RGS spectrum shows no obvious signatures of absorption by partially ionised material (warm absorbers). We fit the 0.3-10.0 keV spectra with a model that includes relativistic reflection from the inner accretion disc, a standard powerlaw AGN continuum, and a low-temperature (~0.1 keV) blackbody, which may originate in the accretion disc, either as direct or reprocessed thermal emission. We find that the reflection model explains the time-averaged spectrum well, and we also undertake flux-resolved and time-resolved spectral analyses, which provide evidence of gravitational light-bending effects. Additionally, the temperature and flux of the blackbody component are found to follow the L∝T4L\propto T^{4} relation expected for simple thermal blackbody emission from a constant emitting area, indicating a physical origin for this component.Comment: 12 pages, 7 figures, accepted for publication in MNRA

    Using a CCD for the direct detection of electrons in a low energy space plasma spectrometer

    Get PDF
    An E2V CCD64 back-illuminated, ion-implanted CCD (charge-coupled device) has been used as a direct electron imaging detector with CATS (Conceptual And Tiny Spectrometer), a highly miniaturised prototype plasma analyser head. This is in place of an MCP (microchannel plate) with a position sensing anode which would more conventionally be used as a detector in traditional low energy space plasma analyser instruments. The small size of CATS however makes it well matched to the size of the CCD, and the ion implants reduce the depth of the CCD backside electron potential well making it more sensitive to lower energy electrons than standard untreated silicon. Despite ionisation damage from prolonged exposure to excessively energetic electrons, the CCD has been able to detect electrons with energies above 500eV, at temperatures around room temperature. Using both a long integration 'current measuring' mode and a short integration `electron counting' mode it has been used to image the low energy electrons exiting the analyser, enhancing our understanding of the CATS electrostatic optics. The CCD has been selected as the detector for use with CATS for an instrument on a low-altitude student sounding rocket flight. Although it cannot detect the lowest energy electrons that an MCP can detect, and it is more sensitive to stray light, the low voltages required, the lack of vacuum requirements and its novelty and availability made it the most attractive candidate detector

    Broad Iron Emission from Gravitationally Lensed Quasars Observed by Chandra

    Get PDF
    Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high-redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed quasars in the redshift range 1.0<z<4.5 observed with Chandra, utilizing over 1.6 Ms of total observing time, focusing on the rest-frame iron K emission from these sources. Although the X-ray signal-to-noise (S/N) currently available does not permit the detection of iron emission from the inner accretion disk in individual cases in our sample, we find significant structure in the stacked residuals. In addition to the narrow core, seen almost ubiquitously in local AGN, we find evidence for an additional underlying broad component from the inner accretion disk, with a clear red wing to the emission profile. Based on simulations, we find the detection of this broader component to be significant at greater than the 3-sigma level. This implies that iron emission from the inner disk is relatively common in the population of lensed quasars, and in turn further demonstrates that, with additional observations, this population represents an opportunity to significantly extend the sample of AGN spin measurements out to high-redshift.Comment: 5 pages, 2 figures, accepted for publication in Ap

    Cyanobacteria blooms cannot be controlled by effective microorganisms (EM) from mud- or Bokashi-balls

    Get PDF
    In controlled experiments, the ability of ‘‘Effective Microorganisms (EM, in the form of mudballs or Bokashi-balls)’’ was tested for clearing waters from cyanobacteria. We found suspensions of EM-mudballs up to 1 g l-1 to be ineffective in reducing cyanobacterial growth. In all controls and EM-mudball treatments up to 1 g l-1 the cyanobacterial chlorophyll-a (Chl-a) concentrations increased within 4 weeks from&120 to 325–435 lg l-1. When pieces of EM-mudballs (42.5 g) were added to 25-l lake water with cyanobacteria, no decrease of cyanobacteria as compared to untreated controls was observed. In contrast, after 4 weeks cyanobacterial Chl-a concentrations were significantly higher in EM-mudball treatments (52 lg l-1) than in controls (20 lg l-1). Only when suspensions with extremely high EM-mudball concentrations were applied (i.e., 5 and 10 g l-1), exceeding the recommended concentrations by orders of magnitude, cyanobacterial growth was inhibited and a bloom forming concentration was reduced strongly. In these high dosing treatments, the oxygen concentration dropped initially to very low levels of 1.8 g l-1. This was most probably through forcing strong light limitation on the cyanobacteria caused by the high amount of clay and subsequent high turbidity of the water. Hence, this study yields no support for the hypothesis that EM is effective in preventing cyanobacterial proliferation or in terminating blooms. We consider EM products to be ineffective because they neither permanently bind nor remove phosphorus from eutroficated systems, they have no inhibiting effect on cyanobacteria, and they could even be an extra source of nutrients
    • …
    corecore