72 research outputs found

    Betrayal: How Black Intellectuals Have Abandoned the Ideals of the Civil Rights Era by Houston A. Baker, Jr .

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97222/1/j.1538-165X.2009.tb01856.x.pd

    The Farrakhan Phenomenon: Race, Reaction, and the Paranoid Style in American Politics by Robert Singh

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96680/1/2658275.pd

    Uneasy Alliances: Race and Party Competition in America by Paul Frymer

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96767/1/2658047.pd

    Granular flow down a rough inclined plane: transition between thin and thick piles

    Full text link
    The rheology of granular particles in an inclined plane geometry is studied using molecular dynamics simulations. The flow--no-flow boundary is determined for piles of varying heights over a range of inclination angles θ\theta. Three angles determine the phase diagram: θr\theta_{r}, the angle of repose, is the angle at which a flowing system comes to rest; θm\theta_{m}, the maximum angle of stability, is the inclination required to induce flow in a static system; and θmax\theta_{max} is the maximum angle for which stable, steady state flow is observed. In the stable flow region θr<θ<θmax\theta_{r}<\theta<\theta_{max}, three flow regimes can be distinguished that depend on how close θ\theta is to θr\theta_{r}: i) θ>>θr\theta>>\theta_{r}: Bagnold rheology, characterized by a mean particle velocity vxv_{x} in the direction of flow that scales as vxh3/2v_{x}\propto h^{3/2}, for a pile of height hh, ii) θθr\theta\gtrsim\theta_{r}: the slow flow regime, characterized by a linear velocity profile with depth, and iii) θθr\theta\approx\theta_{r}: avalanche flow characterized by a slow underlying creep motion combined with occasional free surface events and large energy fluctuations. We also probe the physics of the initiation and cessation of flow. The results are compared to several recent experimental studies on chute flows and suggest that differences between measured velocity profiles in these experiments may simply be a consequence of how far the system is from jamming.Comment: 19 pages, 14 figs, submitted to Physics of Fluid

    Density waves and 1/f1/f density fluctuations in granular flow

    Full text link
    We simulate the granular flow in a narrow pipe with a lattice-gas automaton model. We find that the density in the system is characterized by two features. One is that spontaneous density waves propagate through the system with well-defined shapes and velocities. The other is that density waves are so distributed to make the power spectra of density fluctuations as 1/fα1/f^{\alpha} noise. Three important parameters make these features observable and they are energy dissipation, average density and the rougness of the pipe walls.Comment: Latex (with ps files appended

    Velocity and density profiles of granular flow in channels using lattice gas automaton

    Full text link
    We have performed two-dimensional lattice-gas-automaton simulations of granular flow between two parallel planes. We find that the velocity profiles have non-parabolic distributions while simultaneously the density profiles are non-uniform. Under non-slip boundary conditions, deviation of velocity profiles from the parabolic form of newtonian fluids is found to be characterized solely by ratio of maximal velocity at the center to the average velocity, though the ratio depends on the model parameters in a complex manner. We also find that the maximal velocity (umaxu_{max}) at the center is a linear function of the driving force (g) as umax=αgδu_{max} = \alpha g - \delta with non-zero δ\delta in contrast with newtonian fluids. Regarding density profiles, we observe that densities near the boundaries are higher than those in the center. The width of higher densities (above the average density) relative to the channel width is a decreasing function of a variable which scales with the driving force (g), energy dissipation parameter (ϵ\epsilon) and the width of the system (L) as gμLν/ϵg^{\mu} L^{\nu}/\epsilon with exponents μ=1.4±0.1\mu = 1.4 \pm 0.1 and ν=0.5±0.1\nu = 0.5 \pm 0.1. A phenomenological theory based on a scaling argument is presented to interpret these findings.Comment: Latex, 15 figures, to appear in PR

    Lateral orbitofrontal cortex anticipates choices and integrates prior with current information

    Get PDF
    Adaptive behavior requires integrating prior with current information to anticipate upcoming events. Brain structures related to this computation should bring relevant signals from the recent past into the present. Here we report that rats can integrate the most recent prior information with sensory information, thereby improving behavior on a perceptual decision-making task with outcome-dependent past trial history. We find that anticipatory signals in the orbitofrontal cortex about upcoming choice increase over time and are even present before stimulus onset. These neuronal signals also represent the stimulus and relevant second-order combinations of past state variables. The encoding of choice, stimulus and second-order past state variables resides, up to movement onset, in overlapping populations. The neuronal representation of choice before stimulus onset and its build-up once the stimulus is presented suggest that orbitofrontal cortex plays a role in transforming immediate prior and stimulus information into choices using a compact state-space representation

    A competitive integration model of exogenous and endogenous eye movements

    Get PDF
    We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks. © The Author(s) 2010

    Strom: The Complicated Personal and Political Life of Strom Thurmond by Jack Bass and Marilyn W. Thompson

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97295/1/j.1538-165X.2006.tb01569.x.pd
    corecore